• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 64
  • 38
  • 21
  • 10
  • 7
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 391
  • 99
  • 60
  • 56
  • 54
  • 44
  • 43
  • 42
  • 39
  • 37
  • 37
  • 37
  • 32
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Efeitos diamagnéticos dependentes do Spin nas propriedades de transporte em multicamadas magnéticas

Tavera Llanos, Wilfredo 18 March 1999 (has links)
Orientador: Guillermo Gerardo Cabrera Oyarzun / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-24T17:04:46Z (GMT). No. of bitstreams: 1 TaveraLlanos_Wilfredo_D.pdf: 3259819 bytes, checksum: 421c917482ee2fda740f7b8024865d6c (MD5) Previous issue date: 1999 / Resumo: Apresenta-se um estudo das propriedades de transporte em multicamadas metálicas magnéticas incluindo efeitos diamagnéticos dependentes do spin das órbitas eletrônicas, visando esclarecer se elas podem formar parte da explicação do efeito de magnetoresistência gigante observado naqueles sistemas. Os elétrons numa multicamada sofrem a ação de um campo magnético interno efetivo forte, o qual tem origem na grande energia de troca característica dos metais ferromagnéticos; portanto, as superfícies de Fermi para spin maioria e minoria e a correspondente topologia das órbitas são muito diferentes para cada spin. O espalhamento desde a camada espaçadora consegue acoplar topologias diferentes em ambos os lados da interface numa forma similar ao fenômeno de breakdown magnético. Faz-se cálculos dos tensores galvanomagnéticos para ambas as configurações, com acoplamento ferro ou anti-ferromagnético entre camadas magnéticas, e computa-se a sua diferença. O coeficiente de transmissão para o espalhamento na interface é modelado através de um potencial adequado para descrever as contribuições das diferentes camadas. O tensor de magnetoresistência obtém-se mediante o enfoque cinético de Chambers, que é apropriado para calcular contribuições de redes de órbitas interligadas. Efeitos de compensação contribuem com valores grandes de magnetoresistência quando as camadas estão acopladas anti-ferromagneticamente, e órbitas abertas em direções particulares apresentam resultados interessantes. Sugere-se uma interpretação da magnetoresistência baseada em efeitos da superfície de Fermi onde os efeitos diamagnéticos cumprem um papel importante / Abstract: Diamagnetic and spin-dependent Fermi surface effects are included in the calculation of the transport properties of metallic magnetic multilayers, to elucidate whether they can explain the Giant Magnetoresistance (GMR) effect observed in those systems. We consider that electrons in a multilayer sample, are subjected to a strong effective internal magnetic field, which has its origin in the large spin splitting in ferromagnets. The spin Fermi surfaces for majority and minority carriers are very different, yielding very different electronic orbit topologies for each spin. Scattering from the spacer could then couple orbits of different topologies at both sides of the interface between layers, in a way similar to magnetic breakdown phenomena. We calculate the galvanomagnetic tensors for both configurations, with ferromagnetic and antiferromagnetic couplings between magnetic layers, computing its difference. The transmission coefficient for scattering at the interface boundary is modelled to include magnetic contributions. The magnetoresistance tensor is obtained using the Chambers' path integral approach, which is suited to calculate contributions of entangled networks of electronic orbits. Compensation-like effects enhance the magnetoresistance when the layers are coupled antiferromagnetically, and open orbits in particular directions yield interesting results. We suggest an interpretation of the magnetoresistance based in Fermi surface effects where diamagnetic effects have an important role / Doutorado / Física / Doutor em Ciências
72

Estados eletrônicos e absorção óptica em semicondutores de baixa dimensionalidade

Narvaez, Gustavo Arnaldo 12 December 2000 (has links)
Orientador: José Antonio Brum / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-25T12:18:14Z (GMT). No. of bitstreams: 1 Narvaez_GustavoArnaldo_D.pdf: 8681524 bytes, checksum: 7506f072696269a2c96b2565d6bbb761 (MD5) Previous issue date: 2000 / Resumo: Neste trabalho estudamos o efeito combinado da interação elétron-elétron e a mobilidade do buraco de valência nos estados eletrônicos e a absorção óptica em semicondutores de baixa dimensionalidade dopados com elétrons. Modelamos dois sistemas diferentes: i) pontos quânticos auto-organizados, e ii) sistemas bidimensionais. No primeiro caso calculamos a absorção óptica usando diagonalização exata para o cálculo dos estados eletrônicos finais na presença do buraco de valência. Nossos resultados mostram que o efeito combinado das interações e o recúo do buraco originam um espectro de absorção complexo que apresenta assinaturas claras do número de elétrons ocupando o ponto quântico. No caso de sistemas bidimensionais focalizamos nossa atenção em dois problemas específicos: i) o estado fundamental de um complexo de dois elétrons e um buraco de valência (tríon), e ii) os estados eletrônicos e absorção óptica de um gás de elétrons bidimensional. Por um lado, usando técnicas de diagonalização exata e o método variacional, mostramos que o efeito da mobilidade do buraco de valência no estado fundamental do tríon pode ser representado por uma interação adicional entre os elétrons. Esta nova interação modifica a correlação eletrônica e tende a diminuir a energia de ligação do complexo. Por outra parte, o estudo dos estados eletrônicos do gás de elétrons 2D foi feito na aproximação de campo médio (Hartree e funcional da densidade local) em um sistema finito. Calculamos o espectro de absorção óptica usando um modelo de um partícula que permite a inclusão dos efeitos da interação eletrônica e do recúo do buraco / Abstract: In this work we study the combined effect of the electron-electron interaction and the valence-hole mobility on the electronic states and optical absorption in low dimensional electron doped semiconducting systems. We model two different systems : i) self-assembled quantum dots, and ii) two-dimensional systems. In the first case we calculate the optical absorption using exact diagnalization techniques to calculate the final electronic states in the presence of the valence-hole. Our results show that the combined effect of interactions and hole recoil originate a complex absorption spectrum with clear signatures of the number of electrons charging the dot. On the case of two-dimensional systems we focused in two specific problems: i) the ground state of a complex having two electrons and a valence hole (trion), and ii) the electronic states of a two-dimensional electron gas. Using exact diagonalization techniques and a variational method we show that the effect of the valence-hole mobility may be considered as an additional interaction among electrons. This new interaction modifies the electronic correlation and tends to decrease the binding energy of the complex. On the other side, the study of the electronic states of the two-dimensional electron gas was performed within a mean-field approximation (Hartree and local density functional) on a finite system. We calculate the absorption spectrum using a single-particle model that allows us to include the effect of electronic interactions and hole recoil / Doutorado / Física / Doutor em Ciências
73

Observations de pulsars avec le Fermi Gamma-ray Space Telescope

Parent, Damien 13 November 2009 (has links) (PDF)
Le Large Area Telescope à bord du satellite Fermi, lancé le 11 juin 2008, est un télescope spatial observant l'univers des hautes énergies. L'instrument couvre l'intervalle en énergie de 20MeV à 300 GeV avec une sensibilité nettement améliorée et la capacité de localiser des sources ponctuelles. Il détecte les photons gamma par leur conversion en paire électron-positron, et mesure leur direction et leur énergie grâce à un trajectographe et un calorimètre. Cette thèse présente les courbes de lumières et les mesures spectrales résolues en phase des pulsars radio et gamma détectés par le LAT. La mesure des paramètres spectraux (flux, indice spectral, et énergie de coupure) dépend des fonctions de réponse de l'instrument (IRFs). Une méthode développée pour la validation en orbite de la surface ecace est présentée en utilisant le pulsar de Vela. Les efficacités des coupures entre les données du LAT et les données simulées sont comparées à chaque niveau de la rejection du fond. Les résultats de cette analyse sont propagés vers les IRFs pour évaluer les systématiques des mesures spectrales. La dernière partie de cette thèse présente les découvertes de nouveaux pulsars individuels tels que PSR J0205+6449, J2229+6114, et J1048-5832 à partir des données du LAT et des éphémérides radio et X. Des analyses temporelles et spectrales sont investies dans le but de contraindre les modèles d'émission gamma. Finalement, nous discutons les propriétés d'une large population de pulsars gamma détectés par le LAT, incluant les pulsars normaux et les pulsars milliseconde.
74

Radio Frequency Spectroscopy Of a Quasi-Two-Dimensional Fermi Gas

Zhang, Yingyi January 2013 (has links)
<p>This dissertation presents the first experiments on radio frequency (rf) spectroscopy of a quasi-two dimensional strongly interacting ultracold atomic Fermi gas. A 50-50 mixture of spin-up and spin-down atoms is confined in a series of pancake-shaped traps produced using an optical standing-wave. To make the system quasi-two dimensional, I adjust the Fermi energy in the weakly confined direction to be comparable to the harmonic oscillator energy level spacing in the tightly confined direction.</p><p>For a perfectly two dimensional system, at low enough temperature, spin-up and spin-down atoms should form dimers in the ground state of the tightly confined direction. However, in our quasi-two dimensional system I find that the simple dimer theory does not agree with the measured radio-frequency spectra. Instead, the data can be explained by polaron to polaron transitions, which is a many-body effect. Here, a polaron is a spin-down impurity surrounded by a cloud of particle-hole pairs in a spin-up Fermi sea. With this unique strongly interacting quasi-two dimensional system, I am able to study the interplay between confinement induced two-body pairing and many-body physics in confined mesoscopic systems of several hundred atoms, which has not been previously explored and offers new challenges for predictions.</p> / Dissertation
75

Searching For FFLO States in Ultracold Polarized Fermi Gases: A Numerical Approach

Lu, Hong 24 July 2013 (has links)
Ultracold atomic gases have emerged as an ideal laboratory system to emulate many-body physics in an unprecedentedly controllable manner. Numerous many-body quantum states and phases have been experimentally explored and characterized using the ultracold atomic gases, offering new insights into many exciting physics ranging from condensed matters to cosmology. In this thesis, we will present a systematic numerical study of a novel experimental system, population imbalanced two-component ultracold Fermi gases. We explore the phase diagram of this system in both 3D and 1D especially focusing on the exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, which is characterized by a spatially oscillating order parameter. In 3D, we solve for the stationary states of trapped imbalanced Fermi gases in a wide range of parameter space with a home-made parallel eigen-solver for Bogoliubov-de Gennes (BdG) equations. Our results show that there exists a metastable state with a FFLO type oscillating order parameter. In 1D, we simulate the dynamical expansion of the population imbalanced Fermi gases from the trap. A numerically quasi-exact scheme, time-evolving block decimation (TEBD), is introduced for the comparative studies with the solution of the time-dependent BdG equation. Our results predict that the existence of FFLO states will leave conspicuous signatures in the density profiles during the expansion. For further understanding of the interplay between the population imbalance and two-body pairing interaction between two spin components, we also study the spin transport properties through trapped ultracold Fermi gases. The preliminary results will be discussed.
76

Nonlinear screening of external charge by doped graphene

Ghaznavi, Mahmoudreza 06 April 2010 (has links)
In the rst part of this thesis we discuss some details of properties of graphene and we explain the tight-binding approach to nd the energy spectrum in graphene. In the second part of the thesis, we solve a nonlinear integral equation for the electrostatic potential in doped graphene due to an external charge, arising from a Thomas-Fermi (TF) model for screening by graphene's electron bands. In particular, we study the e ects of a nite equilibrium charge carrier density in graphene, non-zero temperature, non-zero gap between graphene and a dielectric substrate, as well as the nonlinearity in the band density of states. E ects of the exchange and correlation interactions are also brie y discussed for undoped graphene at zero temperature. Results from the nonlinear model are compared with results from both the linearized TF model and the dielectric screening model within the random phase approximation (RPA). In addition, the image potential of the external charge is evaluated from the solution of the nonlinear integral equation and compared to the results of linear models. We have found generally good agreement between the results of the nonlinear TF model and the RPA model in doped graphene, apart from Friedel oscillations in the latter model. However, relatively strong nonlinear e ects in the TF model are found to persist even at high doping densities and large distances of the external charge.
77

Nonlinear screening of external charge by doped graphene

Ghaznavi, Mahmoudreza 06 April 2010 (has links)
In the rst part of this thesis we discuss some details of properties of graphene and we explain the tight-binding approach to nd the energy spectrum in graphene. In the second part of the thesis, we solve a nonlinear integral equation for the electrostatic potential in doped graphene due to an external charge, arising from a Thomas-Fermi (TF) model for screening by graphene's electron bands. In particular, we study the e ects of a nite equilibrium charge carrier density in graphene, non-zero temperature, non-zero gap between graphene and a dielectric substrate, as well as the nonlinearity in the band density of states. E ects of the exchange and correlation interactions are also brie y discussed for undoped graphene at zero temperature. Results from the nonlinear model are compared with results from both the linearized TF model and the dielectric screening model within the random phase approximation (RPA). In addition, the image potential of the external charge is evaluated from the solution of the nonlinear integral equation and compared to the results of linear models. We have found generally good agreement between the results of the nonlinear TF model and the RPA model in doped graphene, apart from Friedel oscillations in the latter model. However, relatively strong nonlinear e ects in the TF model are found to persist even at high doping densities and large distances of the external charge.
78

Precision Measurement of the Sound Velocity in an Ultracold Fermi Gas Through the BEC-BCS Crossover

Joseph, James Adlai January 2010 (has links)
<p>A trapped Fermi gas near a collisional resonance provides a unique laboratory for testing many-body theories in a variety of fields. The ultracold Fermi gas produced in our lab is comprised of the lowest two spin states of $^6$Li. At 834 G there is a collisional or Feshbach resonance between the two spin states. The scattering length between trapped atoms of opposing spins far exceeds the interparticle spacing of the gas. On resonance, a strongly interacting, unitary, Fermi gas is created which exhibits universal behavior. The unitary Fermi gas is a prototype for other exotic systems in nature from nuclear matter to neutron stars and high temperature superconductors.</p> <p>For magnetic fields less than 834 G the scattering length is positive, and pairs Fermi atoms can form molecular dimers. These dimers, comprised of two fermions, are bosons. At ultracold temperatures the molecular bosons populate the lowest energy level and form a Bose Einstein Condensate (BEC). For magnetic fields greater than 834G the scattering length between fermions in opposing spin states is negative, like Cooper pairs formed between electrons in a superconductor. The Bardeen, Cooper, and Shriefer (BCS) theory was developed to describe the pairing effect in the context of superconductors. In our experiment we produce an ultracold unitary gas. By tuning the magnetic field to either side of the Feshbach resonance we can transform the gas into a weakly interacting BEC or BCS superfluid. Therefore, the region near a Feshbach resonance is called the BEC-BCS crossover.</p> <p>This dissertation presents a precision measurement of the hydrodynamic sound velocity in an ultracold Fermi gas near a Feshbach resonance. The sound velocity is measured at various magnetic fields both above and below resonance. Moreover, we are able compare our measurements to theoretical descriptions of hydrodynamic sound propagation. Further, our measurement of sound velocity exactly reproduces the non-perturbative case, eliminating the need to consider nonlinear effects. At resonance the sound velocity exhibits universal scaling with the Fermi velocity to within 1.8\% over a factor of 30 in density. In a near zero temperature unitary gas the average sound velocity at the axial center was measured, $c(0)/v_F$ = 0.364(0.005), as well as the universal constant, $\beta$ = -0.565(0.015). The measurement of sound velocity in an ultracold gas throughout the BEC-BCS crossover provides further evidence of the continuous connection between the physics of the BEC, unitary, and BCS systems.</p> / Dissertation
79

BCS-to-BEC Quantum Phase Transition in High-Tc Superconductors and Fermionic Atomic Gases: A Functional Integral Approach

Botelho, Sergio S. 12 September 2005 (has links)
The problem of the evolution from BCS theory with cooperative Cooper pairing to the formation and condensation of composite bosons has attracted considerable attention for the past several decades. It has gained renewed impetus in the mid-eighties with the discovery of the high-Tc superconductors, which have a coherence length comparable to the interparticle spacing. More recently, this subject has spurred a great deal of research activity in connection with experiments involving dilute atomic gases of fermionic atoms. The initial objective of this work will be to use functional integral techniques to analyze the low-temperature BCS-to-BEC evolution of d-wave superconductors within the saddle point (mean field) approximation for a continuum model. Then, the same mathematical formalism will be applied to the problem of the BCS-to-BEC evolution of fully spin-polarized p-wave Fermi gases in two dimensions. We find that a quantum phase transition occurs for both systems as they are driven from the BCS-like regime of weakly interacting fermionic pairs to the opposite BEC-like regime of strongly interacting bosonic molecules. This is in contrast to the smooth crossover predicted and observed in systems that exhibit s-wave pairing symmetry. We calculate several spectroscopic and thermodynamic properties that signal the occurrence of this phase transition, and suggest some possible experimental realizations. Finally, fluctuations about the saddle point solution are included in the calculations, and the effects of such correction are analyzed in the low (T~0) and high (T~Tc) temperature limits. We conclude that, at high temperatures, the bosonic degrees of freedom that arise from two-particle bound states become essential to describe the strong coupling limit, as the saddle point approximation alone becomes unreliable.
80

Observations of nearby Galaxy Clusters with the Fermi Large Area Telescope : Towards the first Gamma Rays from Clusters

Zimmer, Stephan January 2015 (has links)
Galaxy clusters are the most massive bound systems known in the Universe and are believed to have formed through large scale structure formation. They host relativistic cosmic-ray (CR) populations and are gravitationally bound by large amounts of Dark Matter (DM), both providing conditions in which high-energy gamma rays may be produced either via CR interactions with the intracluster medium or through the annihilation or decay of DM particles. Prior to the launch of the Fermi satellite, predictions were optimistic that these sources would be established as γ-ray-bright objects by observations through its prime instrument, the Large Area Telescope (LAT). Yet, despite numerous efforts, even a single firm cluster detection is still pending. This thesis presents a number of studies based on data taken by the LAT over its now seven year mission aiming to discover these γ rays. Using a joint likelihood technique, we study the γ-ray spectra of a sample of nearby clusters searching for a CR-induced signal due to hadronic interactions in the intracluster medium. While we find excesses in some individual targets, we attribute none to the cluster. Hence, we constrain the maximum injection efficiency of hadrons being accelerated in structure formation shocks and the fraction of CR-to-thermal pressure. We also perform a refined search targeting the Coma cluster specifically due to its large variety of existing observations in other wavebands. In the latter case we find weak indications of an excess which however falls below the detection threshold. Because the cluster emission we consider is inherently extended, we need to take into account the imperfect modeling of the foreground emission, which may be particularly difficult such as is the case with the Virgo cluster. Here, we assess the systematics associated with the foreground uncertainties and derive limits based on an improved background model of the region. For the first time we derive limits on the γ-ray flux from CR and DM-interactions in which we take into account the dynamical state of the system. For DM we also include the contribution from substructure. The DM domain is further explored by searching for line-like features as they arise from the annihilation of DM into two photons in a large sample of clusters, including Virgo and Coma. Finding no evidence for γ-ray lines, we derive limits on the DM annihilation cross section that are roughly a factor 10 (100) above that derived from observations of the galactic center assuming an optimistic (conservative) scenario regarding the boost due to DM substructure. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Submitted.</p>

Page generated in 0.0328 seconds