• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 64
  • 38
  • 21
  • 10
  • 7
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 391
  • 99
  • 60
  • 56
  • 54
  • 44
  • 43
  • 42
  • 39
  • 37
  • 37
  • 37
  • 32
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Numerical Simulations of Heavy Fermion Systems: From He-3 Bilayers to Topological Kondo Insulators / Numerische Simulationen von Schwer-Fermionen-Systemen: Von He-3-Doppellagen zu Topologischen Kondo Isolatoren

Werner, Jan January 2014 (has links) (PDF)
Even though heavy fermion systems have been studied for a long time, a strong interest in heavy fermions persists to this day. While the basic principles of local moment formation, Kondo effect and formation of composite quasiparticles leading to a Fermi liquid, are under- stood, there remain many interesting open questions. A number of issues arise due to the interplay of heavy fermion physics with other phenomena like magnetism and superconduc- tivity. In this regard, experimental and theoretical investigations of He-3 can provide valuable insights. He-3 represents a unique realization of a quantum liquid. The fermionic nature of He-3 atoms, in conjunction with the absence of long-range Coulomb repulsion, makes this material an ideal model system to study Fermi liquid behavior. Bulk He-3 has been investigated for quite some time. More recently, it became possible to prepare and study layered He-3 systems, in particular single layers and bilayers. The pos- sibility of tuning various physical properties of the system by changing the density of He-3 and using different substrate materials makes layers of He-3 an ideal quantum simulator for investigating two-dimensional Fermi liquid phenomenology. In particular, bilayers of He-3 have recently been found to exhibit heavy fermion behavior. As a function of temperature, a crossover from an incoherent state with decoupled layers to a coherent Fermi liquid of composite quasiparticles was observed. This behavior has its roots in the hybridization of the two layers. The first is almost completely filled and subject to strong correlation effects, while the second layer is only partially filled and weakly correlated. The quasiparticles are formed due to the Kondo screening of localized moments in the first layer by the second-layer delocalized fermions, which takes place at a characteristic temperature scale, the coherence scale Tcoh. Tcoh can be tuned by changing the He-3 density. In particular, at a certain critical filling, the coherence scale is expected to vanish, corresponding to a divergence of the quasiparticle effective mass, and a breakdown of the Kondo effect at a quantum critical point. Beyond the critical point, the layers are decoupled. The first layer is a local moment magnet, while the second layer is an itinerant overlayer. However, already at a filling smaller than the critical value, preempting the critical point, the onset of a finite sample magnetization was observed. The character of this intervening phase remained unclear. Motivated by these experimental observations, in this thesis the results of model calcula- tions based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. It leads to an effective ferromagnetic interaction between spins on neighboring sites. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential µ and inverse temperature β = 1/T . The method is a cluster extension to the Dy- namical Mean-Field Theory (DMFT), and allows to systematically include non-local correla- tions beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green’s function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. Both observations serve as fingerprints of the Fermi liquid state. The heavy fermion state appears at a characteristic coherence scale Tcoh. This scale depends strongly on the density. While it is rather high for small filling, for larger filling Tcoh is increas- ingly suppressed. This involves a decreasing quasiparticle residue Z ∼ Tcoh and an enhanced mass renormalization m∗/m ∼ Tcoh−1. Extrapolation leads to a critical filling, where the co- herence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Taking only single-site DMFT results into account, the above scenario seems plausible. However, paramagnetic DMFT neglects the ring exchange interaction completely. In or- der to improve on this, Cellular DMFT simulations are conducted for small clusters of size Nc = 2 and 3. The results paint a different physical picture. The ring exchange, by favor- ing a ferromagnetic alignment of spins, competes with the Kondo screening. As a result, strong short-range ferromagnetic fluctuations appear at larger values of µ. By lowering the temperature, these fluctuations are enhanced at first. However, for T < Tcoh they are increas- ingly suppressed, which is consistent with Fermi liquid coherence. However, beyond a certain threshold value of µ, fluctuations persist to the lowest temperatures. At the same time, while not apparent in the DMFT results, the total occupation n increases quite strongly in a very narrow range around the same value of µ. The evolution of n with µ is always continuous, but hints at a discontinuity in the limit Nc → ∞. This first-order transition breaks the Kondo effect. Beyond the transition, a ferromagnetic state in the first layer is established, and the second layer becomes a decoupled overlayer. These observations provide a quite appealing interpretation of the experimental results. As a function of chemical potential, the Kondo breakdown quantum critical point is preempted by a first-order transition, where the layers decouple and the first layer turns into a ferromagnet. In the experimental situation, where the filling can be tuned directly, the discontinuous transition is mirrored by a phase separation, which interpolates between the Fermi liquid ground state at lower filling and the magnetic state at higher filling. This is precisely the range of the intervening phase found in the experiments, which is characterized by an onset of a finite sample magnetization. Besides the interplay of heavy fermion physics and magnetic exchange, recently the spin- orbit coupling, which is present in many heavy fermion materials, attracted a lot of interest. In the presence of time-reversal symmetry, due to spin-orbit coupling, there is the possibility of a topological ground state. It was recently conjectured that the energy scale of spin-orbit coupling can become dom- inant in heavy fermion materials, since the coherence scale and quasiparticle bandwidth are rather small. This can lead to a heavy fermion ground state with a nontrivial band topology; that is, a topological Kondo insulator (TKI). While being subject to strong correlation effects, this state must be adiabatically connected to a non-interacting, topological state. The idea of the topological ground state realized in prototypical Kondo insulators, in par- ticular SmB6, promises to shed light on some of the peculiarities of these materials, like a residual conductivity at the lowest temperatures, which have remained unresolved so far. In this work, a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single Kramer’s doublet coupled to a single conduction band. The model is investigated in the presence of a Hubbard interaction as a function of interaction strength U and inverse temperature β. The bulk properties of the model are obtained by DMFT, with a hybridization expansion CTQMC impurity solver. The DMFT approximation of a local self-energy leads to a very simple way of computing the topological invariant. The results show that with increasing U the system can be driven through a topological phase transition. Interestingly, the transition is between distinct topological insulating states, namely the Γ-phase and M-phase. This appearance of different topological phases is possible due to the symmetry of the underlying square lattice. By adiabatically connecting both in- teracting states with the respective non-interacting state, it is shown that the transition indeed drives the system from the Γ-phase to the M-phase. A different behavior can be observed by pushing the bare position of the Kramer’s doublet to higher binding energies. In this case, the non-interacting starting point has a trivial band topology. By switching on the interaction, the system can be tuned through a quantum phase transition, with a closing of the band gap. Upon reopening of the band gap, the system is in the Γ-phase, i. e. a topological insulator. By increasing the interaction strength further, the system moves into a strongly correlated regime. In fact, close to the expected transition to the M phase, the mass renormalization becomes quite substantial. While absent in the para- magnetic DMFT simulations conducted, it is conceivable that instead of a topological phase transition, the system undergoes a time-reversal symmetry breaking, magnetic transition. The regime of strong correlations is studied in more detail as a function of temperature, both in the bulk and with open boundary conditions. A quantity which proved very useful is the bulk topological invariant Ns, which can be generalized to finite interaction strength and temperature. In particular, it can be used to define a temperature scale T ∗ for the onset of the topological state. Rescaling the results for Ns, a nice data collapse of the results for different values of U, from the local moment regime to strongly mixed valence, is obtained. This hints at T ∗ being a universal low energy scale in topological Kondo insulators. Indeed, by comparing T ∗ with the coherence scale extracted from the self-energy mass renormalization, it is found that both scales are equivalent up to a constant prefactor. Hence, the scale T ∗ obtained from the temperature dependence of topological properties, can be used as an independent measure for Fermi liquid coherence. This is particularly useful in the experimentally relevant mixed valence regime, where charge fluctuations cannot be neglected. Here, a separation of the energy scales related to spin and charge fluctuations is not possible. The importance of charge fluctuations becomes evident in the extent of spectral weight transfer as the temperature is lowered. For mixed valence, while the hybridization gap emerges, a substantial amount of spectral weight is shifted from the vicinity of the Fermi level to the lower Hubbard band. In contrast, this effect is strongly suppressed in the local moment regime. In addition to the bulk properties, the spectral function for open boundaries is studied as a function of temperature, both in the local moment and mixed valence regime. This allows an investigation of the emergence of topological edge states with temperature. The method used here is the site-dependent DMFT, which is a generalization of the conventional DMFT to inhomogeneous systems. The hybridization expansion CTQMC algorithm is used as impurity solver. By comparison with the bulk results for the topological quantity Ns, it is found that the temperature scale for the appearance of the topological edge states is T ∗, both in the mixed valence and local moment regime. / Obwohl Heavy-Fermion-Systemen bereits seit vielen Jahrzehnten intensiv untersucht werden, ist auch heute ein großes Interesse an Heavy Fermions vorhanden. Obwohl die grundlegenden Konzepte wie die Ausbildung lokaler Momente, der Kondo-Effekt und die zur Entstehung einer Fermi-Flüssigkeit führenden, koha¨renten Quasiteilchen gut verstanden sind, gibt es weiterhin viele offene Fragestellungen. Diese ergeben sich u.a. aus dem Zusammenspiel von Heavy Fermions mit anderen Phänomenen wie Magnetismus und Supraleitung. In dieser Hinsicht können Untersuchungen an He-3 sehr wertvolle Einsichten liefern. Das liegt darin begründet, dass He-3 eine einzigartige Realisierung einer Quanten-Flu¨ssigkeit darstellt. Da He-3-Atome Fermionen sind, und da die langreichweitige Coulomb-Abstoßung keine Rolle spielt, ist dieses Material in idealer Weise dazu geeignet, um Fermi-Flüssigkeiten zu studieren. In drei Dimensionen wird He-3 bereits seit La¨ngerem untersucht. Vor Kurzem gelang es dann auch, Schichtsysteme aus He-3 zu erzeugen und zu untersuchen. Damit ergibt sich die Möglichkeit, die Phänomenologie zweidimensionaler Fermi-Flu¨ssigkeiten detailliert zu unter- suchen. He-3-Schichtsysteme stellen einen idealen Quanten-Simulator für diese Systeme dar, da sich durch Variation der He-3-Konzentration und durch die Wahl verschiedener Substrat- materialien unterschiedliche Eigenschaften der Fermi-Flüssigkeit gezielt einstellen lassen. So wurde in He-3-Doppellagen ein Heavy-Fermion-Verhalten nachgewiesen. In Abha¨ngig- keit der Temperatur wurde ein kontinuierlicher Übergang von einem inkohärenten Zustand mit entkoppelten Lagen zu einer koha¨renten Fermi-Flüssigkeit aus Quasiteilchen mit gemischtem Charakter beobachtet. Dieses Verhalten hat seinen Ursprung in der Hybridisierung der beiden Lagen. Die erste Lage ist beinahe vollständig gefüllt und von starken Korrelationseffekten beeinflusst, wa¨hrend die zweite Lage nur teilgefüllt ist und Korrelationen eine geringe Rolle spielen. Die Quasiteilchen entstehen bei der Kondo-Abschirmung der lokalisierten Momente der ersten Lage durch die delokalisierten Fermionen der zweiten Lage, die bei einer charakteristischen Temperatur-Skala, der Kohärenz-Skala Tcoh stattfindet. Durch das Verändern der Dichte von He-3-Atomen lässt sich Tcoh variieren. Dabei zeigte sich, dass bei einer kritischen Dichte ein Verschwinden der Kohärenzskala zu erwarten ist. Dies korrespondiert mit einer Divergenz der effektiven Masse der Quasiteilchen, und einem Zusammenbrechen des Kondo-Effekts an einem quantenkritischen Punkt. Jenseits dieses kritischen Punktes sind die Lagen vollständig entkoppelt. Die erste Lage ist ein Magnet von lokalen Momenten, während die zweite Lage einen itineranten Overlayer darstellt. Allerdings wurde bereits bei einer Dichte, die kleiner ist als der kritische Wert, die Herausbildung einer endlichen Magnetisierung der Probe beobachtet. Der Charakter dieser Zwischenphase, die dem kritischen Punkt voraus geht, blieb allerdings ungeklärt. In dieser Arbeit werden Resultate von Modellrechnungen eines erweiterten Periodischen Anderson Modell vorgestellt, die von den experimentellen Beobachtungen motiviert wur- den. Dabei ist der Ringaustausch dreier Teilchen, also der dominante magnetische Aus- tauschmechanismus in Schichtsystemen aus He-3, im Modell explizit enthalten. Dieser fu¨hrt zu einer effektiv ferromagnetischen Wechselwirkung zwischen Spins auf benachbarten Gitterplätzen. Zudem berücksichtigt das Modell die Bedingung, dass keine Doppelbesetzung von Gitterplätzen auftritt, indem der Grenzfall einer sehr großen lokalen Coulomb-Abstoßung angenommen wird. Mit Hilfe der Cellular DMFT wird das Modell als Funktion der Parameter chemisches Potential µ und inverse Temperature β = 1/T untersucht. Diese Methode stellt eine Cluster- Erweiterung der Dynamical Mean-Field Theory (DMFT) dar, und erlaubt es, auf systemati- sche Weise nichtlokale Korrelationen zu berücksichtigen, die über die DMFT-Approximation hinaus gehen. Für die Lösung der in jedem Iterationsschritt auftretenden Cluster-Modelle wird ein CTQMC-Cluster-Lo¨ser eingesetzt, der auf der Hybridisierungentwicklung basiert. Dieser liefert unverzehrte, numerisch exakte Ergebnisse für die Greensche Funktion und andere Observablen. In einem ersten Schritt wird die Entstehung der kohärenten Fermi-Flüssigkeitsphase unter- sucht. Bei ausreichend tiefer Temperatur zeigt die Selbst-Energie in Matsubara-Frequenzen eine lineare Frequenzabhängigkeit. Gleichzeitig findet in der Spin-Suszeptibilität ein Über- gang von einem Verhalten nach Curie-Weiss-Gesetz zu einem Pauli-Verhalten statt. Beide Beobachtungen sind eindeutige Hinweise auf einen Fermi-Flüssigkeitszustand. Heavy Fermions bilden sich unterhalb der Kohärenz-Skala Tcoh aus. Diese hängt stark von der He-3-Dichte ab. Tcoh ist bei kleiner Füllung recht hoch, wird bei größerer Fu¨llung allerdings zunehmend unterdrückt. Dies bedingt ein abnehmendes Quasiteilchen-Gewicht Z ∼ Tcoh und eine zunehmende Massenrenormierung m∗/m ∼ Tcoh−1. Durch Extrapolation erhält man einen quantenkritischen Punkt, an dem die Kohärenzskala verschwindet. Gleichzeitig divergiert hier die effektive Masse. Dies entspricht dem Zusammenbrechen des Kondo- Effekts, der für die Entstehung der Quasiteilchen verantwortlich ist, da die effektive Hybri- disierung zwischen den Lagen verschwindet. Berücksichtigt man nur Ergebnisse von paramagnetischer DMFT, so erscheint das obige Szenario plausibel. Allerdings wird in diesem Fall der Ringaustausch komplett vernachlässigt. Um diese Situation zu verbessern, werden Simulationen mit Hilfe von Cellular DMFT an kleinen Clustern der Gro¨ßen Nc = 2 and 3 durchgeführt. Die Ergebnisse zeichnen ein anderes physikalisches Bild. Der Ringaustausch konkurriert mit der Kondoabschirmung der lokalen Momente, da er eine ferromagnetische Ausrichtung der Spins bevorzugt. Daraus resultieren auf kurzen Längenskalen für steigendes µ starke ferromagnetische Fluktuationen. Mit sinkender Temperatur werden diese zunächst verstärkt, dann für T < Tcoh allerdings zunehmend unterdrückt. Dies ist konsistent mit einer kohärenten Fermi-Flüssigkeit. Bei Überschreiten eines gewissen Schwellwertes für µ bestehen die starken Fluktuationen bis zu den tiefsten Temperaturen, die in der Simulation erreicht wurden. Gleichzeitig, zeigt sich ein starker Anstieg der Gesamtbesetzung n in einem engen Fenster um denselben Schwellwert von µ. Dieses Verhalten fehlt in den DMFT-Resultaten vollständig. Die Entwicklung von n mit µ ist stets kontinuierlich, weist allerdings auf eine Diskontinuität im Grenzfall Nc → ∞ hin. Dieser Ü bergang erster Ordnung lässt den Kondo-Effekt abrupt zusammenbrechen. Jenseits des Übergangs ist in der ersten Lage ein ferromagnetischer Zustand ausgebildet, während die zweite Lage ein davon entkoppelter Overlayer wird. ...
102

Low-Temperature Transport Study of Transition Metal Dichalcogenide Heterostructures

Shih, En-Min January 2020 (has links)
The electron-electron interaction is the origin of many interesting phenomena in condensed matter. These phenomena post challenges to theoretical physics and can lead to important future applications. Transition metal dichalcogenide heterostructures provide excellent platforms to study these phenomena because of the two-dimensional nature, large effective mass and tunable bandwidth with moiré potential. As electron bands become narrower such that the Coulomb interaction energy becomes comparable to the bandwidth, interactions can drive new quantum phases. This dissertation describes the realization of this platform and probing of correlated phenomena with low- temperature transport measurements. As the first step, the electrical contact problem of few-layer transition metal dichalcogenides, which prohibits low-temperature transport measurements, needs to be solved. Two different contact schemes have been used to attack this problem. For p-type transition metal dichalcogenide, prepatterned platinum is used to bottom contact transition metal dichalcogenides. This method prevents channel from deterioration due to electron beam evaporation and the high workfunction platinum can place the Fermi level underneath the material valence band. Alternatively, for n-type transition metal dichalcogenides, a single layer of boron nitride is put on transition metal dichalcogenide before cobalt evaporation. This way, the boron nitride layer protects the transition metal dichalcogenide from the process of evaporation and can decrease the work function of cobalt thus putting Fermi level above the conduction band. With these contact methods, Ohmic contacts can be achieved at cryogenic temperature and probing the transition metal dichalcogenide heterostructures with transport measurements become accessible. Then, the magnetotransport properties of monolayer molybdenum disulphide and bilayer tungsten diselenide encapsulated with boron nitride with graphite dual-gate were measured. There are three unique features underlie this two dimensional electron gas system. First, the system is strong correlated. The Landau level spectrum reveals strong correlated signatures, such as enhanced spin-orbit coupling splitting and enhanced effective g-factor. Second, the longitudinal resistance/conductance at half-filling of Landau levels are found to depend on the spin orientation. The minority spin Landau level become totally localized at higher magnetic field. Third, in bilayer device the two layers are weak coupled and can be independently controlled by two gates. All this features establish transition metal dichalcogenide a unique platform for studying correlated physics. Finally, to achieve higher level of correlation, two layers of tungsten diselenide are stacked together with a small twist angle. With the help of moiré potential and layer hybridization, the bandwidth can be continuously tuned by the twist angle. In the range of 3 degree to 5.1degree, with moderate correlation strength, correlated insulating states are shown at half-filled flatband and are highly tunable with vertical electric field.
103

Unconventional Superconductivity Mediated by the Higgs Amplitude Mode in Itinerant Ferromagnets:

Forestano, Roy Thomas January 2021 (has links)
Thesis advisor: Kevin Bedell / Over 20 years ago, Blagoev et. al. predicted an s-wave pairing instability in a ferromagnetic Fermi liquid (FFL) as a consequence of spin fluctuations [5]. Shortly after, it was discovered that, when magnetic interactions in the ferromagnetic superconductor UGe2 dominate, quasiparticles with parallel spin form pairs in odd-parity orbitals; i.e., a form of spin-triplet p-wave superconductivity emerges, in contrast to Blagoev et. al.'s prediction [6]. In this work, we return to this issue by introducing the effects of a gapped amplitude (or "Higgs") mode on the vertex corrections and subsequent form of Cooper pairing. As the Higgs mode only propagates in the presence of a finite spin current, such an amplitude mode results in strong momentum-dependence in the many-body vertex. This results in the emergence of an unconventional form of superconductivity mediated by unconventional low-energy modes in a weak itinerant ferromagnet. / Thesis (BS) — Boston College, 2021. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Scholar of the College. / Discipline: Physics. / Discipline: Mathematics.
104

The de Haas-Van Alphen Effect in Antimony-Tin Alloys

Dunsworth, Allen Edward 09 1900 (has links)
<p> The de Haas-van Alphen effect has been used to measure the Fermi surface areas, cyclotron masses and Dingle temperatures in antimony and its alloys containing less than 0.3 percent tin. The Fermi surface of each alloy was similar to the pure antimony surface. However the hole surface increased in size and the electron surface shrunk since tin removes electrons from the alloy. The cyclotron masses increased and decreased for holes and electrons respectively, giving a definite indication of nonparabolic conduction and valence bands. The cyclotron masses were found from the temperature dependence of the dHvA amplitude after interfering dHvA frequency components were removed by a Fourier analysis technique. The Dingle temperature increased roughly linearily with tin concentration.</p> <p> A comparison of the hole and electron Fermi surface volumes with the number of tin atoms added to the alloys shows that one tin atom removes one electron from the alloy as expected from the unit valence difference between antimony and tin. This value is higher than that found by other workers using different techniques.</p> <p> The shapes of the energy bands along with the cyclotron masses have been compared with several band models. An ellipsoidal band provides a rough overall description of both holes and electrons while an ellipsoidal nonparabolic band describes the mass behaviour on alloying more accurately. A pseudopotential band calculated using the method and potential of Falicov and Lin (1967) was also compared with the data.</p> <p> The observed relative frequency changes were used to compare the data with the rigid band model of alloying. The bands are rigid for low concentrations. At higher concentrations there are deviations apparently caused by the cyclotron mass change and an axial ratio change in the hole Fermi surface.</p> / Thesis / Doctor of Philosophy (PhD)
105

Effective Field Theories for Metallic Quantum Critical Points

Sur, Shouvik 11 1900 (has links)
In this thesis we study the scaling properties of unconventional metals that arise at quantum critical points using low-energy effective field theories. Due to high rate of scatterings between electrons and critical fluctuations of the order parameter associated with spontaneous symmetry breaking, Landau’s Fermi liquid theory breaks down at the critical points. The theories that describe these critical points generally flow into strong coupling regimes at low energy in two space dimensions. Here we develop and utilize renormalization group methods that are suitable for the interacting non-Fermi liquids. We focus on the critical points arising at excitonic, and commensurate spin and charge density wave transitions. By controlled analyses we find stable non-Fermi liquid and marginal Fermi liquid states, and extract the scaling behaviour. The field theories for the non-Fermi liquids are characterized by symmetry groups, local curvature of the Fermi surface, the dispersion of the order parameter fluctuations, and dimensions of space and Fermi surface. / Thesis / Doctor of Philosophy (PhD)
106

Pseudopotential Calculations of the Band Structure and Fermi Surface of Mercury

Jones, John Conrad 12 1900 (has links)
<p> The energy bands and Fermi surface of mercury have been calculated using local and non-local pseudopotentials. The non-local pseudopotentials were an approximation in which the repulsive potentials of the outer atomic core states were explicitly represented by non-local projection operators. </p> <p> A search was made for the regions of parameter space where the pseudopotential generated a Fermi surface having a good fit to the experimental magneto-acoustic calipers and de Haas-van Alphen extremal cross sectional areas. </p> <p> De Haas-van Alphen frequencies and cyclotron masses were calculated for symmetry planes using a local pseudopotential. </p> <p> General questions of pseudopotential theory, the symmetry of the energy bands, the occurrence of degeneracies, and the influence of spin-orbit coupling are also considered. </p> / Thesis / Doctor of Philosophy (PhD)
107

Magnetoresistance and Fermi Surface of Copper Single Crystals Containing Dislocations

Bian, Qiuping 08 1900 (has links)
<p> The galvanomagnetic properties and shape of the Fermi surface of copper single crystals containing different density of dislocations have been studied experimentally and theoretically through magnetoresistivity measurement and using effective medium theory respectively. </p> <p> In experiments, two crystallographic orientations of copper single crystal samples with tensile axis parallel to < 100 > and < 541 > have been plastically strained to various stress levels to introduce different density Nd of dislocations. The experimental data of angle and field-dependent magnetoresistivity measured at temperature T = 2K and in the magnetic filed up to 9 Tesla show that dislocations influence substantially the galvanomagnetic properties of copper crystal samples in the open, extended and closed orbit crystallographic orientations. The results reveal that the pure samples with resistivity ratio RR equal to or larger than 151 show quadratic dependence of transverse magnetoresistivity as a function of the magnetic field in the open-orbit orientation, which changes to linear variation of magnetoresistivity with magnetic fields in highly deformed samples with RR smaller than 138. A quadratic dependence of transverse magnetoresistivity as a function of the magnetic field is significantly suppressed as the density of dislocations increases. The magnetoresistivity decrease with the increase of the density of dislocations was also observed in the closed-orbit crystallographic orientation. Such effect is independent upon the type of dislocations introduced to the crystal lattice.</p> <p> Measurements of the de Hass-van Alphen effect in plastically deformed copper single crystals have been carried out with torque magnetometer and AC susceptibility options of Quantum Design PPMS-9 system. The oscillation frequencies for the extremal orbits normal to the principal crystallographic directions are obtained through Fourier transform of torque versus inversed field characteristics. By comparing these frequencies with the analogous frequencies obtained for undeformed copper crystals, the changes in the cross-sectional area of the Fermi surface corresponding to the extremal orbits are obtained and the shape of the dislocation-distorted Fermi surface is postulated based on measurements performed.</p> <p> The effective-medium approximation and Green's function method are applied to model the magnetoresistivity data and to gain insight into the fundamental material properties responsible for the observed magnetoresistivity behavior. The effective magnetoresistivity calculated using a self-consistent method shows a good agreement with the experimental results.</p> / Thesis / Doctor of Philosophy (PhD)
108

The De Haas-Van Alphen Effect in Mercury

Moss, John Seaborn 05 1900 (has links)
<p> Field modulation techniques were used to observe the de Haas-van Alphen effect in magnetic fields up to 5.5 tesla and at temperatures below 1.1°K. A data acquisition system recorded on magnetic tape the large amount of data necessary for computer fourier analysis of the oscillations. All of the orbits predicted by Keeton and Loucks' model of the Fermi surface of mercury were at least tentatively identified. The data on the β, τ and α orbits were in essential agreement with previous work. The γ and X-face orbits were also investigated in some detail, while tentative identification was made of the μ and T-face orbits. When the data permitted, the areas were fitted to ellipsoids or hyperboloids of revolution by a least squares calculation.</p> <p> A search was made for modifications to the de Haas-van Alphen theory due to phonons. Accurate torque de Haas-van Alphen amplitude measurements were taken as a function of temperature and magnetic field. The analysis of the results revealed no systematic dependence of either the cyclotron effective mass or the Dingle temperature on temperature from 1.25°K to 4.2°K or on magnetic field from 1.5 tesla to 2.3 tesla. Thus no effects due to phonons were observed.</p> <p> A method of observing the open orbits in metallic single crystals was developed and used to observe the open orbits in mercury. The method utilized the eddy currents induced in the sample by the rotation of a magnetic field. This provided a signal which was dependent on the conductivity in the plane perpendicular to the open orbit. The torque amplitude, which indicated the number of open orbit carriers, was used to detect the angular range of the bands of open orbits in mercury. The method was experimentally simple since no special sample geometry was necessary and no electrical connections to the sample were needed.</p> / Thesis / Doctor of Philosophy (PhD)
109

Coulomb Drag Between One-Dimensional Electron Systems

Muhammad, Mustafa January 2007 (has links)
No description available.
110

The Antiferromagnetic Quantum Critical Metal: A nonperturbative approach

Schlief, Andres January 2019 (has links)
PhD Thesis / The superconductivity in heavy-fermion compounds, iron pnictides and cuprates has been intensively studied for over thirty years. Amongst some of these materials, the common denominator is the presence of strong antiferromagnetic fluctuations in their normal state, signaling an underlying quantum phase transition between a paramagnetic metal and a metal with antiferromagnetic long-range order. Although the quantum critical point is experimentally inaccessible due to the presence of superconducting order, it determines the physical properties of the normal state of the metal in a wide range of temperatures. In this thesis we study the low-energy theory for the critical metallic state that arises at the aforementioned quantum critical point. We present a nonperturbative study of the theory in spatial dimensions between two and three. We pay special attention to two dimensions where we show that our physical predictions are in qualitative agreement with experiments in electron-doped cuprates. We further develop a field theoretic functional renormalization group scheme that is analytically tractable. It provides a general framework to study the low-energy theory of metallic states with or without a quasiparticle description. Within this formalism we characterize the single-particle properties of the antiferromagnetic quantum critical metal. This allows one to study the superconducting instability triggered by critical antiferromagnetic quantum fluctuations quantitatively. / Thesis / Doctor of Science (PhD)

Page generated in 0.0164 seconds