• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 15
  • 9
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coulomb Drag Between One-Dimensional Electron Systems

Muhammad, Mustafa January 2007 (has links)
No description available.
2

Anomalous Coulomb diamonds and power-law behavior sensitive to back-gate voltages in carbon nanoscale peapod quantum dots

Mizubayashi, J., Haruyama, J., Takesue, I., Okazaki, T., Shinohara, H., Harada, Y., Awano, Y. 05 1900 (has links)
No description available.
3

Transport dans les nanostructures quantiques / Transport in quantum nanostructures

Souquet, Jean-René 24 January 2014 (has links)
Cette thèse est consacrée à l'étude du transport dans les nanostructures quantiques unidimensionnelles dont les propriétés sont étudiées en s'appuyant notamment sur le bruit en excès à fréquence finie. La première partie de cette thèse est consacrée à l'étude du transport à travers une impureté dans un liquide de Luttinger couplée à un environnement électromagnétique arbitraire. L'impureté est traitée dans deux limites de transmission, la limite tunnel et la limite de faible rétrodiffusion. Les calculs sont menés dans le formalisme de Keldysh. Nous montrons ainsi que la théorie du blocage de Coulomb dynamique, établie pour une jonction tunnel couplée à un environnement à l'équilibre, demeure valide pour un liquide de Luttinger. Par ailleurs nous montrons que les relations de fluctuation dissipation reliant le bruit à fréquence finie au courant reste valide. Nous montrons que cette théorie peut également s'étendre dans la limite de faible rétrodiffusion à condition de prendre en compte la rétro-action du liquide électronique sur l'environnement. En revanche, les relations de fluctuation dissipation ne sont respectées que pour le bruit en émission. Dans une seconde partie nous intéressons effets d'une modulation radiofréquence sur les propriétés de transport des mêmes systèmes. Nous montrons notamment que ces effets peuvent être décrit par une théorie du blocage de Coulomb dynamique effective en convoluant la statistique d'absorption de photon avec la statistique de Tien-Gordon. Notons cependant que les relations de fluctuation dissipation ne sont plus vérifiées. Ces prédictions théoriques sont comparées aux résultats expériments obtenus par une équipe du SPEC au CEA de Saclay. Enfin nous étudions les propriétés de transport lorsque l'environnement, ici un oscillateur harmonique, est maintenu dans un état excité. Nous montrons que la présence de photons autorise d'une part le processus photo-assistés mais favorise également l'absorption de photons par des processus de bunching. Nous montrons finalement que les propriétés du transport s'obtiennent en convoluant la loi de Poisson du blocage de Coulomb avec la fonction caractéristique de Glauber de l'état peuplant l'oscillateur, menant à des statistiques exotiques. Ce dernier point nous permet d'utiliser ce système comme un détecteur d'état quantique. / This thesis discusses electronic transport in uni-dimensional quantum systems whose properties are studied with an extensive use of the finite-frequency non symmetrised excess noise. The first part focuses on transport through an impurity embedded in a Luttinger liquid coupled to an arbitrary electromagnetic environment. The impurity is treated in two paradigmatic situations : The tunneling and the weak backscattering regime. The out-of-equilibrium situation is dealt with the Keldysh Formalism. We show that the dynamical Coulomb blockade theory, extends to the case of a a tunnel junction between Luttinger liquids. Besides, fluctuations dissipation relations that link noise noise and current remain valid. In the transparent regime, we show that the dynamical Coulomb blockade theory applies to the backscattering current albeit back-action effects of the electronic liquid on the electromagnetic environment that have to be taken into account. Fluctuation-dissipation relations remain valid only for the emission noise. The second part focuses on the effects of a micro-wave modulation on the transport properties of the transport properties of these systems. An effective dynamical Coulomb blockade can be obtained by convolving the statistic of absorption of the environment with the Tien-Gordon statistic. Yet, the fluctuation dissipation relations are not verified in this case. These predictions are compared to the experimental results obtained by a team of the SPEC at the CEA Saclay. Last, we study the transport properties of a tunnel junction coupled to a harmonic oscillator maintained in an excited state. We show that the photons within the cavity lead to two distinct processes: photo-assisted transport that enhance the conductance, and bunching effects that enhance the probability to absorbe a large number of photons. An effective dynamical Coulomb blockade theory can also be derived by convolving the Poisson distribution with Glauber characteristic function leading to exotic statistics. These can be probed by excess noise which can thus be used as a quantum state detector.
4

Controlling the Properties of 2D Chiral Fermions and Local Moments in Graphene

Killi, Matthew P. 08 August 2013 (has links)
The primary subject of this thesis is graphene and how the rudimentary attributes of its charge carriers, and local moments on its surface, can be directly manipulated and controlled with electrostatic potentials. We first consider bilayer graphene subject to a spatially varying electrostatic potential that forms two neighbouring regions with opposite interlayer bias. Along the boundary, 1D chiral `kink' states emerge. We find that these 1D modes behave as a strongly interacting Tomonaga-Luttinger liquid whose properties can be tuned via an external gate. Next, we consider superlattices in bilayer graphene. Superlattices are seen to have a more dramatic effect on bilayer graphene than monolayer graphene because the quasiparticles are changed in a fundamental way; the dispersion goes from a quadratic band touching point to linearly dispersing Dirac cones. We illustrate that a 1D superlattice of either the chemical potential or an interlayer bias generates multiple anisotropic Dirac cones. General arguments delineate how certain symmetries protect the Dirac points. We then map the Hamiltonian of an interlayer bias superlattice onto a coupled chain model comprised of `topological' edge modes. We then discuss the relevance of spatially varying potentials to recent transport measurements. This is followed by another study that considers the effect of a magnetic field on graphene superlattices. We show that magnetotransport measurements in a weak perpendicular (orbital) magnetic field probe the number of emergent Dirac points and reveal further details about the dispersion. In the case of bilayer graphene, we also discuss the properties of kink states in an applied magnetic field. We then consider the implications of these results with regards to scanning tunnelling spectroscopy, valley filtering, and impurity induced breakdown of the quantum Hall effect. Finally, we investigate local moment formation of adatoms on bilayer graphene using an Anderson impurity model. We construct various phase diagrams and discuss their many unusual features. We identify regions where the local moments can be turned on or off by applying a external electric fields. Finally, we compute the RKKY interaction between local moments and show how it too can be controlled with electric fields.
5

Controlling the Properties of 2D Chiral Fermions and Local Moments in Graphene

Killi, Matthew P. 08 August 2013 (has links)
The primary subject of this thesis is graphene and how the rudimentary attributes of its charge carriers, and local moments on its surface, can be directly manipulated and controlled with electrostatic potentials. We first consider bilayer graphene subject to a spatially varying electrostatic potential that forms two neighbouring regions with opposite interlayer bias. Along the boundary, 1D chiral `kink' states emerge. We find that these 1D modes behave as a strongly interacting Tomonaga-Luttinger liquid whose properties can be tuned via an external gate. Next, we consider superlattices in bilayer graphene. Superlattices are seen to have a more dramatic effect on bilayer graphene than monolayer graphene because the quasiparticles are changed in a fundamental way; the dispersion goes from a quadratic band touching point to linearly dispersing Dirac cones. We illustrate that a 1D superlattice of either the chemical potential or an interlayer bias generates multiple anisotropic Dirac cones. General arguments delineate how certain symmetries protect the Dirac points. We then map the Hamiltonian of an interlayer bias superlattice onto a coupled chain model comprised of `topological' edge modes. We then discuss the relevance of spatially varying potentials to recent transport measurements. This is followed by another study that considers the effect of a magnetic field on graphene superlattices. We show that magnetotransport measurements in a weak perpendicular (orbital) magnetic field probe the number of emergent Dirac points and reveal further details about the dispersion. In the case of bilayer graphene, we also discuss the properties of kink states in an applied magnetic field. We then consider the implications of these results with regards to scanning tunnelling spectroscopy, valley filtering, and impurity induced breakdown of the quantum Hall effect. Finally, we investigate local moment formation of adatoms on bilayer graphene using an Anderson impurity model. We construct various phase diagrams and discuss their many unusual features. We identify regions where the local moments can be turned on or off by applying a external electric fields. Finally, we compute the RKKY interaction between local moments and show how it too can be controlled with electric fields.
6

Linear and nonlinear edge dynamics and quasiparticle excitations in fractional quantum Hall systems

Nardin, Alberto 12 July 2023 (has links)
We reserve the first part of this thesis to a brief (and by far incomplete, but hopefully self-contained) introduction to the vast subject of quantum Hall physics. We dedicate the first chapter to a discursive broad introduction. The second one is instead used to introduce the integer and fractional quantum Hall effects, with an eye to the synthetic quantum matter platforms for their realization. In the third chapter we present famous Laughlin's wavefunction and discuss its basic features, such as the gapless edge modes and the gapped quasiparticle excitations in the bulk. We close this introductory part with a fourth chapter which presents a brief overview on the chiral Luttinger liquid theory. In the second part of this thesis we instead proceed to present our original results. In the fifth chapter we numerically study the linear and non-linear dynamics of the chiral gapless edge modes of fractional quantum Hall Laughlin droplets -- both fermionic and bosonic -- when confined by anharmonic trapping potentials with model short range interactions; anharmonic traps allow us to study the physics beyond Wen's low-energy/long-wavelength chiral Luttinger liquid paradigm in a regime which we believe is important for synthetic quantum matter systems; indeed, even though very successful, corrections to Wen's theory are expected to occur at higher excitation energies/shorter wavelengths. Theoretical works pointed to a modified hydrodynamic description of the edge modes, with a quadratic correction to Wen's linear dispersion $\omega_k=vk$ of linear waves; even though further works based on conformal field theory techniques casted some doubt on the validity of the theoretical description, the consequences of the modified dispersion are very intriguing. For example, in conjunction with non-linearities in the dynamics, it allowed for the presence of fractionally quantized solitons propagating ballistically along the edge. The strongly correlated nature of fractional quantum Hall liquids poses technical challenges to the theoretical description of its dynamics beyond the chiral Luttinger liquid model; for this reason we developed a numerical approach which allowed us to follow the dynamics of macroscopic fractional quantum Hall clouds, focusing on the neutral edge modes that are excited by applying an external weak time-dependent potential to an incompressible fractional quantum Hall cloud prepared in a Laughlin ground state. By analysing the dynamic structure factor of the edge modes and the semi-classical dynamics we show that the edge density evolves according to a Korteweg-de Vries equation; building on this insight, we quantize the model obtaining an effective chiral Luttinger liquid-like Hamiltonian, with two additional terms, which we believe captures the essential low-energy physics of the edge beyond Wen's highly successful theory. We then move forward by studying -- even though only partially -- some of the physics of this effective model and analyse some of its consequences. In the sixth chapter we look at the spin properties of bulk abelian fractional quantum Hall quasiparticles, which are closely related to their anyonic statistics due to a generalized spin-statistics relation - which we prove on a planar geometry exploiting the fact that when the gauge-invariant generator of rotations is projected onto a Landau level, it fractionalizes among the quasiparticles and the edge. We then show that the spin of Jain's composite fermion quasielectron satisfies the spin-statistics relation and is in agreement with the theory of anyons, so that it is a good anti-anyon for the Laughlin's quasihole. On the other hand, even though we find that the Laughlin’s quasielectron satisfies the spin-statistics relation, it carries the wrong spin to be the anti-anyon of Laughlin’s quasihole. Leveraging on this observation, we show how Laughlin's quasielectron is a non-local object which affects the system's edge and thus affecting the fractionalization of the spin. Finally, in the seventh chapter we draw our conclusions.
7

Zigzag Phase Transition in Quantum Wires and Localization in the Inhomogeneous One-Dimensional Electron Gas

Mehta, Abhijit C. January 2013 (has links)
<p>In this work, we study two important themes in the physics of the interacting one-dimensional (1D) electron gas: the transition from one-dimensional to higher dimensional behavior, and the role of inhomogeneity. The interplay between interactions, reduced dimensionality, and inhomogeneity drives a rich variety of phenomena in mesoscopic physics. In 1D, interactions fundamentally alter the nature of the electron gas, and the homogeneous 1D electron gas is described by Luttinger Liquid theory. We use Quantum Monte Carlo methods to study two situations that are beyond Luttinger Liquid theory --- the quantum phase transition from a linear 1D electron system to a quasi-1D zigzag arrangement, and electron localization in quantum point contacts. </p><p>Since the interacting electron gas has fundamentally different behavior in one dimension than in higher dimensions, the transition from 1D to higher dimensional behavior is of both practical and theoretical interest. We study the first stage in such a transition; the quantum phase transition from a 1D linear arrangement of electrons in a quantum wire to a quasi-1D zigzag configuration, and then to a liquid-like phase at higher densities. As the density increases from its lowest values, first, the electrons form a linear Wigner crystal; then, the symmetry about the axis of the wire is broken as the electrons order in a quasi-1D zigzag phase; and, finally, the electrons form a disordered liquid-like phase. We show that the linear to zigzag phase transition occurs even in narrow wires with strong quantum fluctuations, and that it has characteristics which are qualitatively different from the classical transition.</p><p>Experiments in quantum point contacts (QPC's) show an unexplained feature in the conductance known as the ``0.7 Effect''. The presence of the 0.7 effect is an indication of the rich physics present in inhomogeneous systems, and we study electron localization in quantum point contacts to evaluate several different proposed mechanisms for the 0.7 effect. We show that electrons form a Wigner crystal in a 1D constriction; for sharp constriction potentials the localized electrons are separated from the leads by a gap in the density, while for smoother potentials, the Wigner crystal is smoothly connected to the leads. Isolated bound states can also form in smooth constrictions if they are sufficiently long. We thus show that localization can occur in QPC's for a variety of potential shapes and at a variety of electron densities. These results are consistent with the idea that the 0.7 effect and bound states observed in quantum point contacts are two distinct phenomena.</p> / Dissertation
8

Anharmonic effects in one-dimensional quantum liquids / Effets anharmoniques dans les liquides quantiques unidimensionnels

Reichert, Benjamin 04 October 2018 (has links)
Dans les systèmes quantiques unidimensionnels, le rôle des fluctuations et des interactions est plus important et les théories utilisées à plus haute dimension ne peuvent plus être employées. Le point de départ pour décrire la plupart des systèmes unidimensionnels est la théorie du liquide de Luttinger. Bien que cette théorie décrive de nombreux phénomènes avec succès, elle a aussi ses limites. Par exemple, elle ne peut décrire que la limite de basse énergie d'un system unidimensionnel, elle échoue aussi lorsqu'il s'agit de décrire la désintégration des excitations du système. Dans cette thèse, nous étudions principalement deux types de problème en une dimension. Le premier est l'interaction effective entre des impuretés dans un liquide de bosons tandis que le deuxième est la désintégrations des quasi-particules dans un mélange bosons-fermions. Dans les deux cas, décrire le système comme un liquide de Luttinger n'est pas suffisant. Afin de pallier à cela, nous développons plusieurs approches pour ces systèmes unidimensionnels qui prennent en compte les différentes anharmonicités nécessaires afin de capturer les mécanismes importants en jeu dans ces problèmes. / In one-dimensional quantum systems, the role of fluctuations and interactions is enhanced and theories used in higher- dimensional systems cannot be employed anymore to describe such strongly-correlated systems. The starting point to describe most one-dimensional systems is the Luttinger liquid theory. Even though this theory is successful to describe many phenomena, it has its shortcomings. For example, it can only treat the low-energy limit of one-dimensional systems and fails to describe the decay of excitations. In this thesis, we mainly study two kinds of problems in one dimension. The first one is the effective interaction between impurities in a Bose liquid whereas the second one is the decay of quasiparticles in a Bose-Fermi mixture. In both cases, the description of the system in terms of a Luttinger liquid is not sufficient. To overcome this, we develop different approaches for these one-dimensional systems to account for the various anharmonicities which are necessary to capture the relevant physics of these problems.
9

Metallic Ground State of Functionalized Carbon Nanotubes

Rauf, Hendrik 11 July 2007 (has links) (PDF)
Single-wall carbon nanotubes (SWCNTs) are a fascinating material because they exhibit many outstanding properties. Due to their unique geometric structure, they are a paradigm for one-dimensional systems. Furthermore, depending on their chirality, they can be either metallic or semiconducting. The SWCNT are arranged in bundles of some ten nanotubes with a random distribution of semiconducting and metallic tubes. They are thus one-dimensional objects embedded in a three-dimensional arrangement, the bundles. In this thesis, the metallic ground state of one-dimensional (1D) and three-dimensional (3D) systems is investigated on the basis of SWCNTs, using angle-integrated photoemission spectroscopy. In particular, a transition from a 1D to a 3D metallic system, induced by a charge transfer, is studied on SWCNTs and C60 peapods. In general, the metallic ground state of materials is greatly influenced by correlation effects. In classical three-dimensional metals, electron-electron interaction mainly leads to a renormalization of the charge carrier properties (e.g. effective mass), as described in Landau's Fermi liquid theory. One-dimensional metals are influenced to a greater extent by interactions. In fact, the Landau-quasiparticle picture breaks down due to the Peierls instability. Instead, one-dimensional metals are described by Tomonaga-Luttinger liquid (TLL) theory which predicts unusual properties such as spin-charge separation and non-universal power laws in some physical properties such as the electronic density of states (DOS). Angle-integrated photoemission spectroscopy provides direct access to the DOS and as such directly addresses the power law renormalization of a TLL. It is first shown, that the bundles of single-wall carbon nanotubes indeed exhibit a power law scaling of the electronic density of states is observed as it is expected from TLL theory. The main part of the thesis is devoted to the investigation of the metallic ground state of SWCNTs upon functionalization. In general, functionalization is a controlled modification of the structural and/or electronic properties of SWCNT. It can be carried out e.g. by doping with electron donors or acceptors, by filling the nanospace inside the tubes with molecules or by substituting carbon atoms. First, the behavior of the SWCNT upon chemical doping was probed. The overall modification of the electronic band structure can be explained well by a rigid band shift model. The one-dimensional character of the metallic tubes in the bundle is retained at low doping, but when the semiconducting tubes in the sample are also rendered metallic by the charge transfer, a Fermi edge emerges out of the power law renormalization of the spectral weight, signifying a transition to a three-dimensional metallic behavior. This can be explained by an increased interaction between the tubes in the bundle. A crossover from a Tomonaga-Luttinger liquid to a Fermi liquid is observed. The filling of SWCNTs with C60 molecules leads to the formation of so-called peapods. It raises questions concerning the role of the additional bands originating from the C60 filling in the one-dimensional system. In the pristine state, the states of the C60 filling were found to have no influence on the metallic ground state. The TLL power law scaling of the density of states is observed. The overall interaction between the SWCNT host and the C60 filling is small. Upon doping however, the modified band structure leads to a qualitative change in the crossover from a TLL to a Fermi liquid. Upon doping, also states in the conduction band of the C60 are filled. The evolution of the power law scaling at intermediate doping can be interpreted as an opening of an additional conduction channel of one-dimensional metallic chains of C60 inside the tubes. This is in good agreement with transport experiments. Upon further doping, a Fermi edge similar to the highly doped SWCNTs is observed.
10

Electron Transport through Carbon Nanotube Quantum Dots in A Dissipative Environment

Mebrahtu, Henok Tesfamariam January 2012 (has links)
<p>The role of the surroundings, or <italic> environment </italic>, is essential in understanding funda- mental quantum-mechanical concepts, such as quantum measurement and quantum entanglement. It is thought that a dissipative environment may be responsible for certain types of quantum (i.e. zero-temperature) phase transitions. We observe such a quantum phase transition in a very basic system: a resonant level coupled to a dissipative environment. Specifically, the resonant level is formed by a quantized state in a carbon nanotube, and the dissipative environment is realized in resistive leads; and we study the shape of the resonant peak by measuring the nanotube electronic conductance.</p><p>In sequential tunneling regime, we find the height of the single-electron conductance peaks increases as the temperature is lowered, although it scales more weakly than the conventional T<super>-1</super>. Moreover, the observed scaling signals a close connec- tion between fluctuations that influence tunneling phenomenon and macroscopic models of the electromagnetic environment.</p><p>In the resonant tunneling regime (temperature smaller than the intrinsic level width), we characterize the resonant conductance peak, with the expectation that the width and height of the resonant peak, both dependent on the tunneling rate, will be suppressed. The observed behavior crucially depends on the ratio of the coupling between the resonant level and the two contacts. In asymmetric barriers the peak width approaches saturation, while the peak height starts to decrease.</p><p>Overall, the peak height shows a non-monotonic temperature dependence. In sym- metric barriers case, the peak width shrinks and we find a regime where the unitary conductance limit is reached in the incoherent resonant tunneling. We interpret this behavior as a manifestation of a quantum phase transition.</p><p>Finally, our setup emulates tunneling in a Luttinger liquid (LL), an interacting one-dimensional electron system, that is distinct from the conventional Fermi liquids formed by electrons in two and three dimensions. Some of the most spectacular properties of LL are revealed in the process of electron tunneling: as a function of the applied bias or temperature the tunneling current demonstrates a non-trivial power-law suppression. Our setup allows us to address many prediction of resonant tunneling in a LL, which have not been experimentally tested yet.</p> / Dissertation

Page generated in 0.0873 seconds