• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 682
  • 173
  • 100
  • 28
  • 21
  • 14
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1458
  • 1458
  • 1458
  • 537
  • 243
  • 160
  • 156
  • 156
  • 137
  • 134
  • 134
  • 129
  • 120
  • 113
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Finite Element Simulation of Single-lap Shear Tests Utilizing the Cohesive Zone Approach

Perez, Wilson A 01 January 2016 (has links)
Many applications require adhesives with high strength to withstand the exhaustive loads encountered in regular operation. In aerospace applications, advanced adhesives are needed to bond metals, ceramics, and composites under shear loading. The lap shear test is the experiment of choice for evaluating shear strength capabilities of adhesives. Specifically during single-lap shear testing, two overlapping rectangular tabs bonded by a thin adhesive layer are subject to tension. Shear is imposed as a result. Debonding occurs when the shear strength of the adhesive is surpassed by the load applied by the testing mechanism. This research develops a finite element model (FEM) and material model which allows mechanicians to accurately simulate bonded joints under mechanical loads. Data acquired from physical tests was utilized to correlate the finite element simulations. Lap shear testing has been conducted on various adhesives, specifically SA1-30-MOD, SA10-100, and SA10-05, single base methacrylate adhesives. The adhesives were tested on aluminum, stainless steel, and cold rolled steel adherends. The finite element model simulates what is observed during a physical single-lap shear test consisting of every combination of the mentioned materials. To accomplish this, a three-dimensional model was created and the cohesive zone approach was used to simulate debonding of the tabs from the adhesive. The thicknesses of the metallic tabs and the adhesive layer were recorded and incorporated into the model in order to achieve an accurate solution. From the data, force output and displacement of the tabs are utilized to create curves which were compared to the actual data. Stress and strain were then computed and plotted to verify the validity of the simulations. The modeling and constant determination approach developed here will continue to be used for newly-developed adhesives.
652

Application of the Virtual Fields Method to the Material Properties Identification Using Pressure Gradients

Borras Abdala, Carlos A 01 January 2020 (has links)
The purpose of our work is to estimate arterial stiffness based on the virtual fields method and using pressure gradients and arterial wall motion. Currently, the gold standard to estimate arterial stiffness relies primarily on the pulse wave velocity, which provides a relation between arterial stiffness and the velocity of the pressure wave propagating through the arterial wall. The pulse wave velocity method has been improved over the years, but still depends on specific assumptions regarding, for example, blood pressure, arterial geometry, and linear material response. The proposed method directly links arterial wall displacements and pressure gradients to arterial stiffness and paves the way to computing arterial stiffness with higher accuracy.
653

Stress concentration factors for v-notched plates under axisymmetric pressure

Mutter, Nathan J. 01 January 2010 (has links)
The topic of this thesis is the investigation of the local states of stress resulting from the introduction of av-notch in a coaxial circle on the pressurized surface of a circumferentially clamped plate subject to axisymmetric loading. The understanding of the fracture behavior of a component experiencing such a condition is of particular interest to the aerospace and defense industries where circular plate components are often utilized. In such applications, it is imperative that the designer be able to predict the loading conditions facilitating dynamic fracture. As a step towards solving such problems, the quasi-static analogy is studied. Specifically, the purpose of this research is to examine and model the precise effects a stress raiser will have on the fracture behavior and strength reduction of a circular plate machined from Ultem 1000. Parametric FEM simulations were employed to determine the correlation between notch geometry and the resulting maximum stress and stress distribution in the notch root vicinity. Stress concentration factor (SCF) relationships were developed which characterize the effect individual geometric parameters have on the notch root stresses. Mathematical models were developed to provide the elastic stress concentration factor for any combination of geometric parameters within the range studied. Additionally, the stress distributions along the notch root and ahead of the notch were characterized for a variety of geometric configurations. Test coupons were employed to not only characterize the mechanical behavior of the material, but also characterize the correlation between simple and axisymmetric loading, respectively. The development of a predictive approach for designers of such circular components to be able to accurately determine the fracture behavior of these components was the motivating factor of this study.
654

Development of a Hybrid, Finite Element and Discrete Particle-Based Method for Computational Simulation of Blood-Endothelium Interactions in Sickle Cell Disease

Blakely, Ian Patrick 10 August 2018 (has links)
Sickle cell disease (SCD) is a severe genetic disease, affecting over 100,000 in the United States and millions worldwide. Individuals suffer from stroke, acute chest syndrome, and cardiovascular complications. Much of these associated morbidities are primarily mediated by blockages of the microvasculature, events termed vaso-occlusive crises (VOCs). Despite its prevalence and severity, the pathophysiological mechanisms behind VOCs are not well understood, and novel experimental tools and methods are needed to further this understanding. Microfluidics and computational fluid dynamics (CFD) are rapidly growing fields within biomedical research that allow for inexpensive simulation of the in vivo microenvironment prior to animal or clinical trials. This study includes the development of a CFD model capable of simulating diseased and healthy blood flow within a series of microfluidic channels. Results will be utilized to further improve the development of microfluidic systems.
655

The development of a finite element model for ballistic impact predictions

Perkins, Richard Allen 10 December 2021 (has links)
Concrete is a widely used product and is an important application throughout industry due to its inexpensive cost and wide range of applications. This work focuses on understanding the behavior of high strength concrete in high strain rate ballistic impact loading scenarios. A finite element analysis was created with the implementation of the Concrete Damage and Plasticity Model 2 (CDPM2) to represent the material behavior. The model’s parameters were calibrated to existing literature and the results were analyzed by a comparison of the impact velocity to residual velocity and a qualitative assessment of the impact crater. The model captured the impact dynamics of the contact between the projectile and the concrete target with defined fracture patterns. Impact velocity and target thickness indicated a relatively linear relationship with the final projectile velocity.
656

Flexural bending test of topology optimization additively manufactured parts

Afify, Mohammed 13 December 2019 (has links)
The aim of this work is to model, manufacture, and test an optimized Messerschmitt-BölkowBlohm beam using additive manufacturing. The implemented method is the Solid Isotropic Material with Penalization of a minimum compliance design. The Taubin smoothing technique was used to attenuate geometric noise and minimize the formation of overhanging angles and residual stresses due to the thermal activity of the selective laser melting process. The optimized model required examination and repair of local errors such as surface gaps, non-manifold vertices, and intersecting facets. A comparison between experimental and numerical results of the linear elastic regimes showed that the additively manufactured structure was less stiff than predicted. Potential contributors are discussed, including the formation of an anisotropic microstructure throughout the layer-by-layer melting process. In addition, the effect of selective laser melting process on the mechanical properties of stainless steel 316l-0407 and its influence on structural performance was described.
657

A modular open-source pre-processing tool for finite element simulations of additive manufacturing processes

Furr, William 13 December 2019 (has links)
Additive manufacturing has shown the ability to produce highly complex geometries that are not easily manufactured through traditional means. However, the implications of building these complex geometries regarding thermal history requires more attention. AM process simulations have proven to be computationally expensive and require large amounts of pre-processing to execute. This thesis will start with a review of additive manufacturing along with current modeling efforts. Then, the development of a pre-processing tool for finite element simulations of these processes is presented. It is shown that the pre-processing tool significantly decreases the total time-to-simulation by removing manual steps. Finally, a study using this tool is conducted to analyze the thermal histories of a cube and a cylinder with two different scan strategies and explore differences in resulting thermal history. It is shown that less temperature fluctuations and a lower final temperature result from an offset scan strategy and a cylindrical geometry.
658

Finite element analysis of the mechanisms of impact mitigation inherent to the North American bison (Bison bison) skull

Persons, Andrea Karen 13 December 2019 (has links)
North American bison (Bovidae: Bison bison) incur blunt impacts to the interparietal and frontal bones when they engage in head-to-head fights. To investigate the impact mitigation of these bones, a finite element analysis of the skull under loading conditions was performed. Based on anatomical and histological studies, the interparietal and frontal bones are both comprised of a combination of haversian and plexiform bone, and are both underlain by bony septa. Additionally, the interparietal bone is thicker than the frontal. Data regarding the mechanical properties of bison bone are scarce, but the results of a phylogenetic analysis infer that the material properties of the closely-related domestic cow bone are a suitable proxy for use in the FEA. Results of the FEA suggest that the thickness of the interparietal in conjunction with the bony septa may prevent focal stresses by helping to absorb and disperse the blunt impact energy about the skull.
659

A unified plasma-materials finite element model of lightning strike interaction with carbon fiber composite materials

Aider, Youssef 09 August 2019 (has links)
This work is devoted to the computational modeling of a lightning strike electric arc discharge induced air plasma and the material response under the lightning strike impact. The simulation of the lightning arc plasma has been performed with Finite element analysis in COMSOL Multiphysics. The plasma is regarded as a continuous medium of a thermally and electrically conductive fluid. The electrode mediums, namely the cathode and anode, have also been included in the simulation in a unified manner, meaning that the plasma and electrode domains are simulated concurrently in one numerical model. The aim is to predict the lightning current density, and the heat flux impinged into the anode's material surface, as well as the lightning arc expansion and pressure and velocity of the plasma flow. Our predictions have been validated by the existing experimental data and other numerical predictions reported by former authors.
660

Elaborate Experimentation for Mechanical Characterization of Human Foot Using Inverse Finite Element Analysis

Sirimamilla, Pavana Abhiram January 2009 (has links)
No description available.

Page generated in 0.0879 seconds