Spelling suggestions: "subject:"denite element analysis"" "subject:"bonite element analysis""
711 |
Design Automation of Concrete Slab Bridges and its Application on Set-based Structural Design / Dimensioneringsautomation för betongplattbroar och konkurrensutvärdering av designmodellerXia, Haitian January 2021 (has links)
The presented thesis describes the development of an automation design procedure for structural design of concrete slab bridges and how it can be used to conduct a set-based structural design. The automation procedure integrated finite element modelling, analysis and structural related verification (verifications in geometry, ULS and SLS) together and realised automatic implementation of the two processes. By employing the automation design procedure and the set-based design methodology, a case study is performed based on an existed bridge. In contrast with a traditional point-based design process, the set-based structural design considers a wide range of possible design solutions, called design space, which are combinations of possible choices of different design parameters. In the case study, the design parameters like structural dimensions and reinforcement layout are considered and constitutes the design space. The design space is first narrowed by structural related constraints and further narrowed by multiple criteria which are material cost, material mass and global warming impact (equivalent CO2 emission) until reaching an optimal solution considering the three criteria. The results of the case study reveal the potential of set-based design by using the automation design procedure in obtaining optimal design solutions on the three mentioned criteria. Meanwhile, a rough time estimation shows the automatic procedure helps improve the design efficiency. It also suggests that the evaluation and decision of the finally chosen solution should be the trade-offs between material cost and environmental impact.
|
712 |
FEA MODELING OF A TRIBOMETER’S PIN AND DISK INTERACTIONLi, Haoyu 10 1900 (has links)
<p>A bench scale tribometer, developed at the McMaster Manufacturing Research Institute (MMRI) was designed for mimicking the friction and wear conditions on the rake face of a metal cutting tool. It provides insight into the performance of cutting tools operating under high stress and high temperature machining conditions. It saves test material costs, reduces machine downtime for testing, increases the number of test replicates and effectively adds a reliable testing tool to characterize metal cutting operations.</p> <p>A detailed investigation into the stress distribution, temperature profile and indentation pattern has been performed in order to verify the ability of the device to capture the machining environment and to gain a better understanding of the friction effects and wear conditions. The investigation used finite element analysis to simulate the MMRI’s tribometer with the FEA results compared to the experimental results. This data was then used to tune the operating conditions of the tribometer to improve its ability to simulate the machining environment.<strong></strong></p> / Master of Applied Science (MASc)
|
713 |
PREDICTION OF CUTTING COEFFICIENTS DURING ORTHOGONAL METAL CUTTING PROCESS USING FEA APPROACHKERSHAH, TAREK 04 1900 (has links)
<p>Finite element analysis (FEA) employs a science-based approach in which the complete machining process can be simulated and optimized before resorting to costly and time-consuming experimental trials. In this work, cutting coefficient of AISI 1045 steel will be estimated using finite element modelling using Arbitrary Lagrangian Eulerian formulation (ALE). The estimated values are then experimentally validated. A parametric study is carried out after in order to investigate how some cutting parameters can affect the cutting coefficients. The process parameters to be varied include feed rate, cutting speed, and cutting edge radius.</p> / Master of Applied Science (MASc)
|
714 |
Evaluation of the approximations involved in analyzing high rate shear experiments of brain tissue using finite element analysisBao, Jing January 2011 (has links)
The results of brain tissue finite element (FE) models under high rate shear deformation are affected by several factors. This thesis evaluated the effects of hourglass control, Poisson's ratio and element type in such simulations. Moreover, a comparison of FE and analytical models were performed related to boundary conditions. The simulations and optimizations were executed in ANSYS, LS-DYNA and LS-OPT. A Rivlin hyperelastic material model with linear viscoelasticity was used to describe the mechanical response of brain tissue. Examples of inverse FE material characterization of representative brain shear experiments at strain rates of 800, 500, 120 and 90 S-1 were studied and the results were validated by the ability to predict wave traveling times and deformed configurations. The difference between experimental and idealized shear strain increased with aspect ratio. One-point-integrated brick element combined with stiffness hourglass control gave the best result. A smaller Poisson's ratio that is still physically meaningful, e.g. 0.495, is preferable. / Mechanical Engineering
|
715 |
DEVELOPMENT OF A COMPUTATIONAL MODEL TO INVESTIGATE THE THERMO-MECHANICAL BEHAVIOUR OF CUTTING TOOLSSaifullah, Md Khalid January 2019 (has links)
During machining, the cutting tool wears out and affects the machined surface quality and overall production cost. The prediction of tool wear and analysis of cutting mechanics has significant importance for process optimization and cutting-edge design. In this present study, an efficient FE simulation approach (Arbitrary Eulerian-Lagrangian) on the Abaqus/Explicit platform has been developed to improve the predictability of flank wear and to select the appropriate tool edge geometry in the orthogonal turning operation. The FE model was calibrated by comparing the simulation and experimental force values. A new approach was applied to capture the worn tool geometry based on the frictional stress value acting on the cutting tool. The effect of wear geometry on the cutting zone was investigated with respect to temperature, normal stress, sliding velocity, and plastic deformation. The experimental tool wear pattern and characteristics for the differently prepared edges were studied and compared to the thermo-mechanical value retrieved from the FE model. Tool wear for differently prepared edges was calculated using Usui’s wear rate equation, which was calibrated using a hybrid calibration method. The efficiency of the calibration method was investigated at different cutting speeds and feed rates. The performance of pre-coating edge preparation was evaluated in both experimental and numerical studies. / Thesis / Master of Applied Science (MASc)
|
716 |
Selective Laser Melting of Porosity Graded Gyroids for Bone Implant ApplicationsMahmoud, Dalia January 2020 (has links)
The main aim of this thesis is to investigate the manufacturability of different gyroid
designs using Selective laser melting (SLM) process . This study paves the way for a better
understanding of design aspects, process optimization, and characterization of titanium
alloy (Ti6Al4V) gyroid lattice structures for bone implant applications.
First, A MATLAB® code was developed to create various gyroid designs and understand
the relationship between the implicit equation parameters and the measurable outputs of
gyroid unit cells. A novel gyroid lattice structure is proposed, where the porosity is graded
in a radial direction. Second, gyroid designs were investigated by developing a permissible
design map to help choose the right gyroid parameters for bone implants.
Third, response surface methodology was used to study the process-structure-property
relationship and understand the effect of SLM process parameters on the manufacturability
of Ti6Al4V gyroid lattice structures. Laser power was found to be the most significant
factor affecting the errors in relative density and strut size of gyroid structures. A
volumetric energy density between 85 and 103 J/mm3 induces the least errors in the
gyroid’s relative density.
Fourth, the quasi-static properties of the novel designs were compared to uniform gyroids.
The proposed novel gyroids had the highest compressive strength reaching 160 MPa.
Numerical simulations were studied to give insight into how manufacturing irregularities
can affect the mechanical properties of gyroids. Last, an in-depth defect analysis was
conducted to understand how SLM defects may influence the fatigue properties of different
Ti6Al4V gyroids. Thin struts have less internal defects than thick ones; thus, they show less crack propagation rate and higher normalized fatigue life. These favorable findings
contributed to scientific knowledge of manufacturability of Ti6Al4V porosity graded
gyroids and determined the influence of SLM defects on the mechanical properties of
gyroid designs for bone implants. / Thesis / Doctor of Philosophy (PhD) / This thesis studies the integration of design aspects, SLM manufacturability, and
mechanical characterization of Ti6Al4V gyroid lattice structures used for bone implants.
A MATLAB® code was developed to design novel porosity graded gyroids, and develop
permissible design map to aid the choice of different gyroid designs for bone implants..
Process maps were also developed to investigate the relationship among laser power, scan
speed, and the errors in the relative density of lattice structures. Moreover, the normalized
fatigue strength of thin struts gyoid was found to be higher than that of thicker
struts.Analytical models and finite element analysis (FEA) models were compared to
experimental results. The variation of the results gives a better understanding of the effect
of manufacturing defects. An improved insight of gyroids manufacturability has been
obtained by integrating the permissible design space with the process-structure-property
relationship, and the defect analysis of porosity graded gyroids.
|
717 |
Analysis of the transient thermomechanical behaviour of a lightweight brake disc for a regenerative braking systemSarip, S. Bin, Day, Andrew J., Olley, Peter, Qi, Hong Sheng January 2013 (has links)
no / Regenerative braking would extend the working range of an EV or HV provided that any extra energy consumption from increased vehicle mass and system losses did not outweigh the saving from energy recuperation, also reduce duty levels on the brakes themselves, giving advantages including extended brake rotor and friction material life, but more importantly reduced brake mass, minimise brake pad wear. The objective of this research is to define thermal performance on lightweight disc brake models. Thermal performance was a key factor which was studied using the 3D model in FEA simulations. Ultimately a design method for lightweight brakes suitable for use on any car-sized hybrid vehicle was used from previous analysis. The design requirement, including reducing the thickness, would affect the temperature distribution and increase stress at the critical area. Based on the relationship obtained between rotor weight, thickness, undercut effect and offset between hat and friction ring, criteria have been established for designing lightweight brake discs in a vehicle with regenerative braking.
|
718 |
Analysis of Adhesive Anchorage Systems Under Extreme In-Service Temperature ConditionsWang, Rachel 19 March 2019 (has links) (PDF)
Adhesive anchorage systems have found widespread use in structural applications, including bridge widening, concrete repair and rehabilitation, and barrier retrofitting. Because these applications typically require adhesive anchorage systems to be installed outdoors, the effects of climate conditions and day-to-day temperature fluctuations on adhesive behavior and performance should be considered. The purpose of this thesis is to simulate pullout tests of adhesive anchorage systems for threaded rod and reinforcing bars and to emulate effects under various temperature conditions through the use of finite element analysis. Results from the finite element simulation are then compared to the physical tests conducted at UMass Amherst to determine the validity of the finite element model and to assess any notable differences in adhesive anchor performance in hot, cold, and ambient temperatures. In addition, differences in adhesive stresses when anchoring threaded rod versus reinforcing steel are evaluated.
|
719 |
Finite Element Modeling of Plastic Pails when Interacting with Wooden PalletsAlvarez Valverde, Mary Paz 04 June 2024 (has links)
The physical supply chain relies on three components to transport products: the pallet, the package, and unit load stabilizers. The interactions between these three components can be investigated to understand the relationship between them to find potential optimization strategies.
The relationship between corrugated boxes and pallets have been previously investigated and have found that the relationship can be used to reduce the quantity of material used in unit loads and can also reduce the cost per unit load if the package and pallet are designed using a systems approach.
Although corrugated boxes are a common form of packaging, plastic pails are also used in packaging for liquids and powders, but they have not been previously investigated. To understand the interactions between the wooden pallet and plastic pails, physical tests were conducted and then used to create and validate a finite element model. The experiments were carried out in three phases. The first phase included physical testing of plastic pails where the deckboard gap and overhang support conditions would be isolated by using a rigid deckboard scenario. The second phase also used physical tests to investigate plastic pails but instead used flexible deckboards and used an overhang support condition and a 3.5 in. gap support condition.
The third phase of experiments would develop and validate a finite element model to further understand the impact of deckboard gaps and overhang depending on the location of the gap. Previous physical experiments were used to create and validate the finite element model.
Nonlinear eigen buckling analysis was used to model the plastic pail buckling failure that was seen in physical testing. The model based on the physical experiments was able to predict the behavior of the plastic pail within a range of 5-12% variation with higher variation being introduced when the flexible deckboard is introduced. The finite element model was then used to model a range of deckboard gap sizes and overhang sizes as well as different locations for deckboard gaps. The results of the experiments indicate that the percent of pail perimeter that is supported directly on the pallet impacts the compression strength of the plastic pail. Decreasing the quantity of support decreases the compression strength of the plastic pail in a linear pattern.
The location of the deckboard gap also influenced the compression strength because of the quantity of pail being supported being altered. The results of the experiments can be used by industry members to provide guidelines on unit load design to prevent plastic pail failure.
Industry members can also use the results as a baseline investigation and further the finite element model by incorporating their own plastic pail design. / Doctor of Philosophy / The physical movement of products relies on three main elements: pallets, packaging, and stabilizers for unit loads. Examining how these components interact helps uncover their relationships and potential strategies for optimization. Previous studies have explored the connection between corrugated boxes and pallets, revealing ways to reduce material usage and costs through a systems-based design approach.
While corrugated boxes are commonly studied, plastic pails, used for liquids and powders, have not received similar attention. To understand the dynamics between wooden pallets and plastic pails, physical tests were conducted. The physical experiments illustrated the importance of investigating the relationship within unit loads but there are limitations that exist when doing physical experimentation such as time and materials. A finite element model is a mathematical model that can be used to simulate physical phenomenon to further understand physical interactions without having to conduct physical experiments. Using the results of the physical experiments that were conducted, a finite element model was developed to further investigate the system that exists between pails and pallets. The experiments occurred in three phases. The first phase focused on isolating deckboard gap and overhang support conditions using a rigid deckboard scenario in plastic pail testing. In the second phase, a pallet with flexible deckboards was used to explore overhang and a 3.5-in. gap support condition.
The third phase involved creating and validating a finite element model to better grasp the impact of deckboard gaps and overhang, considering gap location. Previous physical experiments guided the model's development and validation. Nonlinear eigen buckling analysis simulated plastic pail buckling failure observed in physical tests. The model predicted plastic pail behavior within a 5-12% variation range, with greater variation when using flexible deckboards.
This model explored various deckboard gap and overhang sizes, along with different gap location and found that the quantity of unsupported perimeter that the pail experiences affects the quantity of load that the pail can experience before achieving failure.
These results are impactful to industry members because it quantifies the impact that pallets can have on their package. Understanding the interactions between the package and the pallet can also be used to create unit loads that are safer by quantifying the buckling load of plastic pails. Investigating plastic pails and the interactions between pallet components can lead to creating safer and better design unit loads in the industry.
|
720 |
Size Effect in Polymeric Materials: the Origins and the Multi-physics Responses in Ultrasound FieldsPeng, Kaiyuan 06 January 2021 (has links)
The size effect in the thermo-mechanical behavior of polymeric materials is a critically important
phenomenon and has been the subject of many researches in past decades. For example,
polystyrene (PS), a widely used polymeric material, is brittle at the bulk state. When the
dimensions decreases to the nanoscale, such as PS in nanofibers, their ductility becomes
orders higher than their bulk state. In recent years a number of diverse applications, such
as scaffolds in tissue engineering, drug delivery devices, as well as soft robotics, are designed
by utilizing the unique properties of polymers at nanoscale. However, the inside mechanism
of the size dependency in polymeric materials are still not clear yet. In this dissertation, systematic
computational and experimental studies are made in order to understand the origins
of the size effect for one- and two-dimensional polymeric materials. This framework is also
expanded to investigate the size-dependent multi-physics response of functional polymeric
materials (shape memory polymers) which are actuated by high-intensity focused ultrasound
(HIFU). Our computational studies are based on molecular dynamic (MD) simulations at
the atomistic scale, and experimentally-validated finite element models at the bulk level.
From bottom-up direction, molecular dynamics can reveal the mechanisms of the size effect
in polymers at molecular level, and help predict properties of the bulk materials. In this
research, MD simulations are performed to track the origins of the size-effect in the mechanical
properties of PE and PS nanofibers. In addition, the size-dependent thermal response
of functional polymeric films is also studied at the atomistic scale by utilizing molecular dynamics simulations to predict the thermal properties and actuation mechanisms in these
materials when subjected to HIFU fields. From top-down direction, experiments and finite
element analysis, are also conducted in this research. An experimentally-validated finite
element framework is built to study the mechanical response of shape memory polymers
(SMPs) triggered by HIFU. As an external trail towards application fields, a SMP composite
with enhanced shape memory ability and also a two-way SMP are synthesized. A smart
gripper and also a self-rolling structure are designed by using these SMPs, which approves
that these SMPs are good components in designing soft robotics. Finally, The influence of
evaporation during fiber forming process is investigated by molecular dynamics simulation.
It is found that the formation of the microstructure of polymeric fibers at nanoscale depends
on the balance of stretching force and evaporation rate when the fiber is forming. / Doctor of Philosophy / Thermomechanical properties of a thin fiber, a thin film and a cube made of a polymer are
significantly different. Although, based on the extensive research that has been performed in
recent years our understanding of this size-dependency is advanced to a great degree in the
past decades, there are still many unanswered basic questions that can only be addressed
by performing computational and experimental investigation at different length scales, from
atomistic up to bulk level in polymers. In this research we target exploring some unknown aspects
of the size dependency in the thermomechanical properties of polymers by investigating
their deformation mechanisms at different length scales. As the first step, we will investigate
the mechanical properties of polymeric fibers. For these fibers, the mechanical properties
are strongly connected to the fiber's diameter. The prevailing hypothesis is that this size
dependency is closely related to the thickness of the surface layer of the nanofibers. Our
results show some unknown origins behind the size dependency of the mechanical properties
in polyethylene (PE) and polystyrene (PS) nanofibers, which originate from the deformation
mechanisms at the atomistic scale. In addition, not just the mechanical properties, the
thermal properties and response of functional polymers subjected to an external stimulation
are also related to their size. For example, the thermal conductivity of a fiber, a sheet and a
cube may be significantly different. Our study shows the thermal responses of different polymers
triggered by ultrasound are also different. The size and the type of the polymers will
both have influence on the final temperature in the polymeric materials, when the polymeric materials are heated by same ultrasound source. We also have applied our computational
and experimental frameworks to investigate this phenomenon. In addition, we also used a
new shape memory polymer composite and a two-way shape memory polymer on designing
soft robotics-like structures. Overall this research indicates that both mechanical response
and thermal responses of polymers are highly related to their dimension. Taking advantage
of these unique size effects, and by tailoring this property, diverse devices can be made for
being used in a broad range of applications.
|
Page generated in 0.0921 seconds