• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Additive manufacturing supply chain design and modeling using customer product choices: an application with biomedical implants

Ranta, Julekha Hussain 06 August 2021 (has links)
This study proposed a utility-driven two-stage stochastic mixed-integer linear programming model to understand how the patient preferences impact the additive manufacturing (AM) supply chain design decisions. The goal of the mathematical model is to maximize the utilities derived from the customer preferences by appropriately allocating the AM facilities in the targeted region under customer decision and demand uncertainty. The mathematical model is visualized and validated by developing a real-life case study that utilizes the biomedical implants data for the state of Mississippi. A number of sensitivity analyses are conducted to understand how the patients' behavioral decisions (e.g., price-centric versus time- or quality-centric customers) to purchase biomedical implants impact the AM supply chain design decisions. The results revealed key managerial insights that could be utilized by healthcare service providers and interested stakeholders to provide quality healthcare services by managing patient-centric AM facility siting decisions.
2

Micro-bending and patterning via high energy pulse laser peening

Pence, Chelsey Nicole 01 May 2014 (has links)
High energy pulse laser peening (HEPLP) is a manufacturing process, in which a strong shock wave is produced and induces high pressures on the surface of the target material. Generally, this process is used to improve material properties such as the hardness and fatigue life. First a 2D multi-physics model for the process was investigated, which simulates the pressure induced on the surface of the target material. The model can be coupled with commercial finite element software, such as ABAQUS, to more accurately simulate the HEPLP process to find stresses and deformations on the surface. Next two novel applications using the HEPLP process were investigated. The first, laser shock bending is a sheet metal micro-forming process using HEPLP to accurately bend, shape, precision align, or repair micro-components with bending angles less than 10°. Negative bending angle (away from laser beam) can be achieved with the high-energy pulsed laser, in addition to the conventional positive laser bending mechanism. In this thesis, various experimental and numerical studies on aluminum sheets were conducted to investigate the different deformation mechanisms, positive and negative. The experiments were conducted with the sheet thickness varying from 0.25 to 1.75 mm and laser pulse energy of 0.2 to 0.5 J. A critical thickness threshold of 0.7-0.88 mm was found that the transition of positive negative bending mechanism occurs. A statistic regression analysis was also developed to determine the bending angle as a function of laser process parameters for positive bending cases. The second application studied used HEPLP to imprint complex two-dimensional (2D) patterns dental implant material of cpTi. Pure titanium (commercial pure cpTi) is an ideal dental implant material, without the leeching of toxic alloy elements. Evidence has shown that unsmooth implant surface topologies may contribute to the osteoblast differentiation in human mesenchymal pre-osteoblastic cells, which is helpful to avoid long-term peri-abutment inflammation issues for the dental implant therapy with transcutaneous devices. Studies have been conducted on the grit blasted, acid etched, or uni-directional grooved Ti surface, however, for these existing approaches the surface quality is difficult to control or may even damage the implant. The strong shock wave generated by HEPLP is used to press a stainless steel grid, used as a stamp, on Ti foils to imprint a 2D pattern. In this study, the multiple grid patterns and grid sizes were applied to test for cell-attachment improvements. Then, the cell culture tests were conducted with the patterned surface to investigate the contribution of these 2D patterns, with the control tests of the other existing implant surface topography forming approaches. The micro-patterns proved successful in increasing the cell-attachment, increasing the number of cells attaching to the material and also contributing to the cell-growth within the grooved areas.
3

Fabrication of Advanced Organic-Inorganic Nanocomposite Coatings for Biomedical Applications by Electrodeposition

Pang, Xin 03 1900 (has links)
Novel electrodeposition strategies have been developed for the fabrication of thick adherent zirconia ceramic and composite coatings for biomedical applications. The new method is based on the electrophoretic deposition (EPD) of polyelectrolyte additives combined with the cathodic precipitation of zirconia. The method enables the room- temperature electrosynthesis of crystalline zirconia nanoparticles in the polymer matrix. Adherent crack-free coatings up to several microns thick were obtained. The deposits were studied by thermogravimetric and differential thermal analysis, X-ray diffraction analysis, scanning and transmission electron microscopy, and atomic force microscopy. Obtained results pave the way for electrodeposition of other ceramic-polymer composites. Novel advanced nanocomposite coatings based on bioceramic hydroxyapatite (HA) have been developed for the surface modification of orthopaedic and dental implant metals. HA nanoparticles prepared by a chemical precipitation method were used for the fabrication of novel HA-chitosan nanocomposite coatings. The use of chitosan enables room-temperature fabrication of the composite coatings. The problems related to the sintering of HA can be avoided. A new electrodeposition strategy, based on the EPD of HA nanoparticles and electrochemical deposition of chitosan macromolecules, has been developed. The method enabled the formation of dense, adherent and uniform coatings of various thicknesses in the range of up to 60μm. Bioactive composite coatings containing 40.9-89.8 wt% HA were obtained. The deposit composition and microstructure can be tailored by varying the chitosan and HA concentrations in the deposition bath. A mathematical model describing the formation of the HA-chitosan composite deposit has been developed. X-ray studies revealed preferred orientation of HA nanoparticles in the nanocomposites. Obtained coatings provide corrosion protection of the substrates and can be utilized for the fabrication of advanced biomedical implants. For further functionalization of the HA-chitosan composite coating, Ag and CaSi03 have been incorporated into the coating. Novel HA-Ag-chitosan and HA-CaSiO3-chitosan nanocomposite coatings have been deposited as monolayers, laminates, and coatings of graded composition. The obtained results can be used for the development of biocompatible antimicrobial coatings with controlled Ag+ release rate, and nanocomposite coatings with enhanced bioactivity. / Thesis / Doctor of Philosophy (PhD)
4

Wear behavior of Ti-6Al-4V for Joint Implants manufactured by Electron Beam Melting

Shrestha, Sanjay 25 May 2017 (has links)
No description available.
5

High Purity Magnesium Coatings and Single Crystals for Biomedical Applications

Salunke, Pravahan Shamkant January 2017 (has links)
No description available.
6

Electrodeposition of Organic-Inorganic Films for Biomedical Applications

Deen, Imran A. 10 1900 (has links)
<p>Electrochemical methods show great promise in the deposition of biocompatible coatings for biomedical applications with advanced functionality. Consequently, methods of creating coatings of bioactive materials, such as halloysite nanotubes (HNT), hydroxyapatite (HA), chitosan, hyaluronic acid (HYH), poly-L-ornithine (PLO) and poly-L-lysine (PLL) and polyacrylic acid (PAA) have been developed through the use of electrophoretic deposition (EPD). The co-deposition of these materials are achieved at voltages ranging from 5 to 20 V on a 304 stainless steel substrate using suspensions of 0.5 and 1.0 gL<sup>-1</sup> biopolymer (chitosan, PAA, PLO, PLL) containing 0.3, 0.5 0.6, 1.0 and 2.0 gL<sup>-1</sup> bioceramic (HNT, HA). The resulting films were then investigated to further understand the kinetics and mechanics of deposition, determine their properties, and evaluate their suitability for physiological applications. The films were studied using X-Ray Diffraction (XRD), Differential Thermal Analysis and Thermogravimetric Analysis (DTA/TGA), Scanning Electron Microscopy (SEM), Quartz Crystal Microbalance (QCM) and Linear Polarisation. The results indicate that film thickness, composition and morphology can be controlled and modified at will, and that the deposition of composite films, multilayer laminates and functionally graded films are possible.</p> / Master of Applied Science (MASc)
7

Selective Laser Melting of Porosity Graded Gyroids for Bone Implant Applications

Mahmoud, Dalia January 2020 (has links)
The main aim of this thesis is to investigate the manufacturability of different gyroid designs using Selective laser melting (SLM) process . This study paves the way for a better understanding of design aspects, process optimization, and characterization of titanium alloy (Ti6Al4V) gyroid lattice structures for bone implant applications. First, A MATLAB® code was developed to create various gyroid designs and understand the relationship between the implicit equation parameters and the measurable outputs of gyroid unit cells. A novel gyroid lattice structure is proposed, where the porosity is graded in a radial direction. Second, gyroid designs were investigated by developing a permissible design map to help choose the right gyroid parameters for bone implants. Third, response surface methodology was used to study the process-structure-property relationship and understand the effect of SLM process parameters on the manufacturability of Ti6Al4V gyroid lattice structures. Laser power was found to be the most significant factor affecting the errors in relative density and strut size of gyroid structures. A volumetric energy density between 85 and 103 J/mm3 induces the least errors in the gyroid’s relative density. Fourth, the quasi-static properties of the novel designs were compared to uniform gyroids. The proposed novel gyroids had the highest compressive strength reaching 160 MPa. Numerical simulations were studied to give insight into how manufacturing irregularities can affect the mechanical properties of gyroids. Last, an in-depth defect analysis was conducted to understand how SLM defects may influence the fatigue properties of different Ti6Al4V gyroids. Thin struts have less internal defects than thick ones; thus, they show less crack propagation rate and higher normalized fatigue life. These favorable findings contributed to scientific knowledge of manufacturability of Ti6Al4V porosity graded gyroids and determined the influence of SLM defects on the mechanical properties of gyroid designs for bone implants. / Thesis / Doctor of Philosophy (PhD) / This thesis studies the integration of design aspects, SLM manufacturability, and mechanical characterization of Ti6Al4V gyroid lattice structures used for bone implants. A MATLAB® code was developed to design novel porosity graded gyroids, and develop permissible design map to aid the choice of different gyroid designs for bone implants.. Process maps were also developed to investigate the relationship among laser power, scan speed, and the errors in the relative density of lattice structures. Moreover, the normalized fatigue strength of thin struts gyoid was found to be higher than that of thicker struts.Analytical models and finite element analysis (FEA) models were compared to experimental results. The variation of the results gives a better understanding of the effect of manufacturing defects. An improved insight of gyroids manufacturability has been obtained by integrating the permissible design space with the process-structure-property relationship, and the defect analysis of porosity graded gyroids.
8

Optimal Supply Chain Configuration for the Additive Manufacturing of Biomedical Implants

Emelogu, Adindu Ahurueze 09 December 2016 (has links)
In this dissertation, we study two important problems related to additive manufacturing (AM). In the first part, we investigate the economic feasibility of using AM to fabricate biomedical implants at the sites of hospitals AM versus traditional manufacturing (TM). We propose a cost model to quantify the supply-chain level costs associated with the production of biomedical implants using AM technology, and formulate the problem as a two-stage stochastic programming model, which determines the number of AM facilities to be established and volume of product flow between manufacturing facilities and hospitals at a minimum cost. We use the sample average approximation (SAA) approach to obtain solutions to the problem for a real-world case study of hospitals in the state of Mississippi. We find that the ratio between the unit production costs of AM and TM (ATR), demand and product lead time are key cost parameters that determine the economic feasibility of AM. In the second part, we investigate the AM facility deployment approaches which affect both the supply chain network cost and the extent of benefits derived from AM. We formulate the supply chain network cost as a continuous approximation model and use optimization algorithms to determine how centralized or distributed the AM facilities should be and how much raw materials these facilities should order so that the total network cost is minimized. We apply the cost model to a real-world case study of hospitals in 12 states of southeastern USA. We find that the demand for biomedical implants in the region, fixed investment cost of AM machines, personnel cost of operating the machines and transportation cost are the major factors that determine the optimal AM facility deployment configuration. In the last part, we propose an enhanced sample average approximation (eSAA) technique that improves the basic SAA method. The eSAA technique uses clustering and statistical techniques to overcome the sample size issue inherent in basic SAA. Our results from extensive numerical experiments indicate that the eSAA can perform up to 699% faster than the basic SAA, thereby making it a competitive solution approach of choice in large scale stochastic optimization problems.
9

Toward Cuffless Blood Pressure Monitoring: Integrated Microsystems for Implantable Recording of Photoplethysmogram

Marefat, Fatemeh 07 September 2020 (has links)
No description available.
10

Capacitive Wireless Power Transfer to Biomedical Implants: Link Design, Implementation, and Related Power Management Integrated Circuitry

Erfani, Reza 02 September 2020 (has links)
No description available.

Page generated in 0.0863 seconds