• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 1
  • Tagged with
  • 42
  • 13
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

TRACE METAL BIOGEOCHEMISTRY OF FRESHWATER FLOC

Plach, Janina M. 10 1900 (has links)
<p>Water-quality in freshwater ecosystems is linked to metal contaminant sequestration and transport by suspended aquatic floc. This doctoral thesis investigates the combined microscale biogeochemical processes as well as macroscale hydrodynamic mechanisms controlling trace metal dynamics of freshwater floc, through comparative assessments of floc versus bottom bed sediment metal(loid) (Ag, As, Co, Cu, Ni and Pb) sequestration/mobilization across aquatic ecosystems ranging in physico-chemistry (e.g. pH, organic carbon, Fe/trace metal concentrations) in the Boreal Forest Region of Ontario and under variable energy-regimes (i.e. calm, windy, prolonged-storm) in a shallow wave-dominated urban beach in Lake Ontario, Canada.</p> <p>The results establish differential biogeochemical controls in suspended floc versus bed sediments influencing the abundance, reactivity and type of Fe minerals affecting trace metal abundance and solid-phase partitioning patterns between these two compartments. Specifically, this work demonstrates a microbial underpinning to floc collection of amorphous Fe oxyhydroxides (FeOOH) controlling floc metal sorption, retention and overall metal concentrations that are significantly greater in suspended floc than bed sediment. In contrast, crystalline Fe oxides (FeOx) dominate sediment metal retention, due to reductive dissolution and/or mineral aging of FeOOH, where sediment solid-solution metal partitioning is more influenced by system physico-chemistry (i.e pH). Further, rapid fluctuations in energy regime influencing re-suspension/settling of floc and sediment (i.e. surficial fine-grained lamina (SFGL) versus underlying consolidated sediments) result in temporal and spatial hydrodynamic-dependent mixing of Fe mineral phases, altering metal abundance and solid-phase metal partitioning in each compartment.</p> <p>Collectively, findings of this innovative integrated thesis work provide new understanding of the physical and biogeochemical controls on Fe cycling/mineral transformations between floc and bed sediments, ultimately affecting trace metal iv behaviour between these compartments and fate in freshwater environments. This insight has important implications for policy development in improving risk management of aquatic systems under varying physico-chemical and hydrodynamic conditions.</p> / Doctor of Philosophy (PhD)
12

Vertical Transport of Sediment from Muddy Buoyant River Plumes in the Presence of Different Modes of Interfacial Instabilities

Rouhnia, Mohamad 21 September 2016 (has links)
This study focuses on deposition processes from sediment laden buoyant river plumes in deltaic regions. The goal is to experimentally examine the effects of various physical phenomena influencing the rate at which sediment is removed from the plume. Previous laboratory and field measurements have suggested that, at times, sedimentation can take place at rates higher than that expected from individual particle settling (i.e., C{W}_{s}). Two potential drivers of enhanced sedimentation are flocculation and interfacial instabilities. We experimentally measured the sediment fluxes from each of these processes using two sets of laboratory experiments that investigate two different modes of instability, one driven by sediment settling and one driven by fluid shear. The settling-driven and shear-driven instability sets of experiments were carried out in a stagnant stratification tank and a stratification flume respectively. In both sets, continuous interface monitoring and concentration measurement were made to observe developments of instabilities and their effects on the removal of sediment. Floc size was measured during the experiments using a separate floc camera setup and image analysis routines. Results from the stratification tank experiments suggest that the settling-driven gravitational instabilities do occur in the presence of flocs, and that they can produce sedimentation rates higher than those predicted from floc settling. A simple cylinder based force balance approach adopting the concept of critical Grashof number was used to develop a model for the effective settling velocity under settling-driven instabilities that is a function of sediment concentration in the plume only. Results from the stratification flume experiments show that under shear instabilities, the effective settling velocity is greater than the floc settling velocity, and increases with plume velocity and interface mixing. The difference between effective and floc settling velocity was denoted as the shear-induced settling velocity. This settling rate was found to be a strong function of the Richardson number, and was attributed to mixing processes at the interface. Conceptual and empirical analysis shows that the shear-induced settling velocity is proportional to U{Ri}^{-2}. Following the experiments, analyses were made among contributions of different mechanisms on the total deposition rate, and the locations that the various mechanisms may be active in the length of a plume. This analysis leads to a conceptual discretization of a plume into three zones of sedimentation behavior and Richardson number. The first zone is the supercritical near-field plume with intense interface mixing. Zone two represents the subcritical region where interface mixing still occurs, and zone three is the high Richardson number zone where mixing at the interface is effectively nonexistent. In zones one and two, individual floc settling and shear-induced settling mechanisms play the major roles in removing sediment from the plume. While, shear-induced settling rate was found to be maximum near the river mouth, its share of the total settling rate increases in the crossshore direction, since sand and large particulates deposit near the inlet and only small particles (with relatively low settling velocity) remain as the plume propagates. The third zone, starts when the interfacial mixing diminishes and leaking commences. / Ph. D.
13

Optical monitoring of flocs and filaments in the activated sludge process

Koivuranta, E. (Elisa) 10 May 2016 (has links)
Abstract Flocculation plays a critical role in the activated sludge process, where flocs are removed by settling and where unsatisfactory flocculation is resulting in poor effluent quality. Control and operation of the process is also challenging as it is sensitive to external and internal disturbances. Furthermore, stricter environmental demands are also being placed on wastewater treatment and discharge quality thus solutions are needed to improve the current systems. A novel optical monitoring method employing a tube flow and a CCD camera was developed to characterize the flocs and filaments of the sludge, and the method was tested on samples from full-scale activated sludge plants. An online device operating on the same principle was also developed and this was tested over a period of eight months at municipal wastewater treatment plant. Optical monitoring was employed in the laboratory to study the breakage of activated sludge flocs. Based on the image analysis data, in the industrial plant the major breakage process was large-scale fragmentation. In the two municipal plants, it was surface erosion. The flocs had more filaments and were more irregular in shape in the industrial plant, which could be the reason for the large-scale fragmentation. The effect of floc morphology on the effluent clarity of the activated sludge process was studied in the industrial and municipal activated sludge plants by optical monitoring over periods of three months and eight months, respectively. The changes in floc morphology took place slowly in both plants. Four major factors that correlated with the purification results were the size and shape of the flocs and the quantities of small particles and filaments. The image analysis results suggested that the settling problem that occurred during the test periods in the industrial plant was caused by dispersed growth, whereas that in the municipal plant was caused by filamentous bulking. In conclusion, it is possible to use the developed method online in order to analyse the state of flocculation. Thus the method could be useful when developing online monitoring applications for quantifying floc characteristics and for diagnosing the causes of settling problems in the wastewater treatment plants. / Tiivistelmä Aktiivilieteprosessissa flokkulaatiolla on merkittävä rooli, sillä muodostuneet flokit poistetaan prosessista laskeutuksen avulla. Siten huono flokkulaatio johtaa puhdistetun jäteveden kiintoainemäärän lisääntymiseen. Prosessin säätö ja operointi on kuitenkin hankalaa, sillä aktiivilieteprosessi on herkkä ulkoisille ja sisäisille häiriöille. Jätevedenpuhdistukseen liittyvät ympäristövaatimukset ja päästöehdot vesistöihin ovat myös tiukentuneet, joten uusia menetelmiä tarvitaan parantamaan nykyisiä prosesseja. Tässä työssä kehitettiin uusi, optinen kuvantamismenetelmä karakterisoimaan flokkeja ja rihmoja. Menetelmä hyödyntää putkivirtausta ja CCD-kameraa ja sitä testattiin aktiivilietelaitosten näytteillä. Lisäksi kehitettiin samaa periaatetta noudattava online-laitteisto, jota testattiin kahdeksan kuukauden ajan. Optista kuvantamista testattiin laboratoriossa flokkien hajoamistutkimuksessa. Kuva-analyysitulosten perusteella kahden kunnallisen aktiivilietelaitoksen flokit hajosivat pintaeroosioon perustuvan mallin mukaan ja teollisen aktiivilietelaitoksen flokit hajosivat fragmentaatiomallin mukaan. Teollisen aktiivilietelaitoksen flokeissa oli enemmän rihmoja ja ne olivat epäsäännöllisemmän muotoisia, mikä voi olla syynä flokkien fragmentaatioon. Flokkien morfologian vaikutus jäteveden puhdistustuloksiin tutkittiin teollisessa (kolmen kuukauden ajan) ja kunnallisessa (kahdeksan kuukauden ajan) aktiivilietelaitoksessa optisella kuvantamismenetelmällä. Molemmissa laitoksessa muutokset flokkien morfologiassa tapahtuivat hitaasti. Neljä tärkeintä tekijää, jotka korreloivat puhdistustulosten kanssa, olivat flokkien koko ja muoto sekä pienten partikkelien ja rihmojen määrä. Kuva-analyysitulosten perusteella laskeutumisongelma teollisessa jätevesilaitoksessa johtui flokinmuodostajabakteerien liian pienestä määrästä ja kunnallisessa jätevesilaitoksessa rihmamaisten bakteerien liikakasvusta. Yhteenvetona voidaan todeta, että kehitettyä menetelmää on mahdollista käyttää online-mittarina sekä sen avulla voidaan arvioida flokkulaation tilannetta. Siten menetelmää on mahdollista hyödyntää flokkien ominaisuuksien karakterisoinnissa ja arvioidessa jätevedenkäsittelylaitoksen laskeutumisongelmien aiheuttajaa.
14

Functionalized nanocelluloses in wastewater treatment applications

Suopajärvi, T. (Terhi) 31 March 2015 (has links)
Abstract The chemicals currently used for wastewater treatment are mainly based on synthetic inorganic or organic compounds. Oil-derived polyelectrolytes are used for the removal of colloidal solids from wastewater by flocculation and coagulation, for example, while activated carbon adsorbents are typically used to remove soluble impurities such as heavy metals and recalcitrance organic matter. Many of these chemicals have associated negative health impacts, and use of activated carbon has proved to be expensive. Moreover, the present synthetic chemicals are not readily biodegradable or renewable. Thus there is a high demand for “green” water chemicals which could offer a sustainable solution for achieving high-performance, cheap water purification. Water chemicals of a new type based on nano-scale particles (nanofibrils) derived from cellulose, i.e. nanocelluloses, are examined as possible bio-based chemicals for wastewater treatment. Two anionic nanocelluloses (dicarboxylic acid, DCC, and sulphonated ADAC) were tested as flocculants in the coagulation-flocculation treatment of municipal wastewater, while the flocculation performance of cationic nanocellulose (CDAC) was studied with model kaolin clay suspensions, and nanocelluloses produced from sulphonated wheat straw pulp fines (WADAC) were tested for the adsorption of lead (Pb(II)). The anionic nanocelluloses (DCC and ADAC) showed good performance in treating municipal wastewater in a combined coagulation-flocculation process with a ferric coagulant. In the case of both anionic nanocelluloses the combined treatment resulted in a lower residual turbidity and COD in a settled suspension with highly reduced total chemical consumption relative to coagulation with ferric sulphite alone. Likewise, the CDACs resulted in powerful aggregation of kaolin colloids and maintained effective flocculation performance over wide pH and temperature ranges. The capacity of the nanofibrillated and sulphonated fines cellulosics (WADAC) for the adsorption of Pb(II) was 1.2 mmol/g at pH 5, which is comparable to the capacities of commercial adsorbents. / Tiivistelmä Jätevesien kemiallinen käsittely pohjautuu pääsääntöisesti synteettisten epäorgaanisten ja orgaanisten kemikaalien käyttöön. Öljypohjaisia polyelektrolyytteja käytetään kolloidisten partikkeleiden poistamiseen jätevesistä koaguloimalla ja flokkuloimalla, kun taas liuenneita epäpuhtauksia, kuten raskasmetalleja, poistetaan useimmiten adsorboimalla ne aktiivihiileen. Synteettiset vesikemikaalit valmistetaan uusiutumattomista luonnonvaroista ja niiden hajoaminen luonnossa voi olla hidasta, minkä lisäksi monet näistä käytetyistä synteettisistä vesikemikaaleista ovat terveydelle haitallisia. Aktiivihiilen käyttö puolestaan on kallista, johtuen sen korkeista valmistus- ja käyttökustannuksista. Uusille ”vihreille vesikemikaaleille, jotka tarjoavat ympäristöystävällisempiä, halpoja sekä tehokkaita ratkaisuja vedenpudistukseen, onkin suuri kysyntä. Tässä työssä selluloosasta valmistettuja nanokokoisia partikkeleita, eli nanoselluloosia, on tutkittu yhtenä varteenotettavana biovaihtoehtona uusiksi kemikaaleiksi jätevesien puhdistukseen. Kahden anionisen nanoselluloosan (dikarboksyyli, DCC, ja sulfonoitu, ADAC) flokkauskykyä testattiin koagulointi-flokkulointi reaktioissa kunnallisen jäteveden puhdistuksessa. Kationisen nanosellun (CDAC) flokkauskykyä tutkittiin puolestaan kaoliinisaven malliliuoksilla ja vehnän korsisellun hienoaineista nanofibrilloimalla sekä sulfonoimalla valmistetuilla (WADAC) nanoselluloosamateriaaleilla testattiin lyijyn (Pb(II)) adsorptiota vesiliuoksista. Anioniset nanoselluloosat (DCC ja ADAC) toimivat tehokkaasti kunnallisen jäteveden flokkauksessa ferri-sulfaatin kanssa yhdistetyissä koagulointiflokkulointi reaktioissa. Yhdistetyissä reaktioissa molemmat anioniset nanoselluloosat vähensivät sameutta sekä COD pitoisuutta laskeutetuissa jätevesinäytteissä huomattavasti pienemmillä kemikaalikulutuksilla paremmin kuin pelkästään ferri-sulfaatilla koaguloitaessa. Myös CDAC:t toimivat tehokkaasti flokkauksessa keräten tehokkaasti kaoliinin kolloidipartikkeleita yhteen laajalla pH- ja lämpötila-alueella. Nanofibrilloidun ja sulfonoidun vehnäsellun hienoaineen (WADAC) adsorptiokapasiteetti lyijylle Pb(II) oli 1.2 mmol/g pH:ssa 5, mikä on verrannollinen kaupallisten adsorptiomateriaalien kapasiteettiin.
15

The Effect of Shear on Flocculation and Floc Size/Structure

Selomulya, Cordelia, Chemical Engineering & Industrial Chemistry, UNSW January 2002 (has links)
The effect of shear on the evolution of floc properties was investigated to analyse the flocculation mechanisms. Little fundamental attention has been given to the shear influence that often creates compact aggregates, while the floc characteristics might differ in other aggregating conditions. It is thus crucial to understand how flocs evolve to steady state, if their properties are to be 'tailored' to suit subsequent solids-liquid separation processes. In this work, flocculation of monodisperse latex particles of various sizes (60, 380, and 810 nm diameter) via electrolyte addition was carried out in a couette-flow and also in shear fields generated by an axial-flow impeller (Fluid foil A310) and a radial-flow impeller (Rushton R100) in standard mixing tanks. A small-angle light scattering technique was used to acquire information regarding the time variation of floc properties in a non-intrusive manner. The structure was quantified by a measure of fractal dimension, signifying the degree of floc compactness. Estimates of the average floc mass were also obtained from the aggregate scattering patterns. By monitoring the changes in floc structure and mass, corresponding to the size evolution; mechanisms of floc formation, fragmentation, and restructuring were identified. Aggregates of 60 and 380 nm particles were observed to grew larger initially, before decreasing to their equilibrium sizes at moderate shear rates (32 - 100 s-1) in a homogeneous shear environment. Floc restructuring at large length scales occurred extensively, and was responsible for the drop in size, particularly at the early stage of the process. Aggregates of 810 nm particles did not, however, display this behaviour. Flocs of larger primary particles were presumably susceptible to breakage rather than deformation, as they were weaker under comparable conditions. Denser aggregates were found when restructuring transpired, while comparatively tenuous flocs were observed when formation and breakage kinetics were the governing mechanisms. The disparity in floc behaviour at higher shear rates (246 s-1 - 330 s-1) was less apparent. The intense hydrodynamic stresses in those instances inevitably caused fragmentation, regardless of the intrinsic particle properties; hence the observed floc compaction was the product of break-up and re-aggregation. A population balance model, incorporating variation in floc structure, displayed comparable trends in size evolution; verifying that restructuring indeed took an important role under certain flocculation conditions. Similar phenomena were likewise observed with the flocculation in stirred tanks. The results reinforced findings in literature; that while circulation time controlled the process kinetics; the floc size was determined by the turbulent stresses. In addition, the maximum shear levels also influenced the floc structures, with denser aggregates produced in a shear field generated using the radial-flow impeller at equivalent energy dissipation per-unit mass. A correlation between non-dimensional floc factor that embodied the aggregate size and structure, and aggregation factor comprising the significant parameters from flocculation conditions, was proposed. The proposed relationship takes into account aspects such as the aggregate structure, interparticle forces, and particle concentration that are often overlooked in existing relationships, which usually only relate the maximum floc size to the applied energy dissipation rate. It thus provides an improved manner of presenting general flocculation data, as well as a means to predict floc properties produced under a specific aggregation condition. Future studies with increasingly complex systems that resemble real conditions are recommended in order to establish a practical understanding of the flocculation mechanisms, for the purpose of optimising the aggregate properties.
16

Fibre flow mechanisms

Bergström, Roger January 2005 (has links)
The flow behaviour, and primarily the floc-floc interaction, of pulp paper suspensions have been studied visually. Analogy models based on these observations have been developed as well as the identification of important parameters of floc break-up in low shear rate flow fields. Floc compressions and the locations of voids (areas of lower fibre concentration) where found to influence the floc splitting mechanism. Based on this investigation an equipment for measuring the load carrying ability of fibre flocs and networks was designed, and the effect of measurement geometry, network structure and fibre suspension concentration was investigated. The load carrying ability with concentration increases rapidly when going from 1% to 2% in initial suspension concentration. A model handling the fibre floc behaviour during extension and compression has been developed, and some basic flocculated flow mechanisms are discussed on an analogy basis. A modified Voigt element is use, describing mainly the compressional behaviour and plastic behaviour of loose fibre network structures. Further the pos- sibility of stress chain formation is discussed on a fibre level as well as on a floc level. The effect of fibre flow (shear field) occurring in the forming zone of a roll former has been studied in detail. Basic forming mechanisms on floc scale has been investi- gated, and the effect of running parameters like dewatering pressure and jet-to-wire speed difference as well as the fibre type and concentration of the pulp suspension has been evaluated. It is evident that floc elongation increases with shear rate (jet-to-wire speed difference) and lower dewatering rate. The latter is because the fibre floc is subjected to the shear field longer due to slower immobilisation. Shorter fibre tends to create weaker networks, which promotes a higher elongation of the flocs. / QC 20100901
17

Pickles and Pickets after NAFTA: Globalization, Agribusiness, the US-Mexico Food-Chain, and Farm-Worker Struggles in North Carolina.

Coin, Francesca 08 June 2007 (has links)
This dissertation analyzes the changes introduced in the U.S.-Mexico food-chain, and the ways in which the multinational corporations that control the food industrial complex from seed to shelves have altered the labor dynamics of farm-workers. Over the past two decades, U.S. agribusiness and big retail-chains such as Wal-Mart have reached the top of the food pyramid and have come to control the process of production, supply, and distribution of agricultural inputs and perishable food. My study analyzes the impact of U.S. agribusiness on growers and farm-workers, focusing on how the integration of agriculture into a “free-trade” world economy has affected the working conditions of farm-labor. It explores how migrant farm-workers have responded to their deteriorating labor conditions with a campaign led by the Farm-Labor Organizing Committee (FLOC) that involved innovative cross-border grassroots tactics and strategy. It traces how this campaign culminated in the achievement of the first labor contract for guest-workers in U.S. history. Based on participant observation, interviews with the workers and their union leaders, and the analysis of workers’ grievances, I conclude that such a reorganization of the farm-labor movement at the grassroots level is crucial to the creation of a food-chain that is capable of satisfying the needs of production and consumption for the global population.
18

Biological sulfur reactions and the influence on fluid flow at mid-ocean ridge hydrothermal systems

Crowell, Brendan William 10 July 2007 (has links)
This thesis is an investigation into biogenic sulfide oxidation and sulfate reduction associated with hydrothermal systems at oceanic spreading centers. First, the production of sulfur floc and 'snowblower' events due to sulfide oxidizing bacteria is investigated. The effects of sulfur floc on the pososity is shown to be negligible. 'Snowblower' events are shown to be sulfur floc that is stored over long periods of time mixed with a component of sulfur floc being created in a bloom event. Secondly, biogenic sulfate reduction in hydrothermal recharge zones is investigated and the effects on the concentration profiles is considered.
19

Assessing ENERGY Regime Effects on PATHOGEN-PARTICLE Interactions Linking Water Quality to Ecosystems and Public Health

Tirado, Sandra M. 10 February 2012 (has links)
Floc-pathogen interactions are important determinants of the fate of pathogens in aquatic systems. The dissociation of bacteria from particles due to shear stress can significantly increase the presence of free-floating pathogenic bacteria in the aqueous phase. This has implications for pathogen transport and water quality. This study evaluated the interactions of water-borne pathogens with particles in selected aquatic ecosystems. Three experimental chapters and one concluding chapter is presented. Chapter 3 assesses the strength of the floc-microorganism association under different energy levels in relation to the physico-chemical properties and the bioorganic content of flocs from six different aquatic environments (SB, CSO, RF, AG, ML, MN); Chapter 4 evaluates how energy dissociates bacteria and affects microbial diversity in free-floating and particle-associated fractions in cohesive bed sediments (BedS) and suspended flocs (SusF) of three sites (SB, CSO, RF). Chapter 5 studies the diversity and succession among free-floating and particle-associated bacteria at different energy levels and the abundance of antibiotic resistance genes and Class 1 integrons (intI1) as a result of ecosystem perturbation in the six initial sites. Different strategies, such as standard laboratory analytical methods, as well as techniques based on analytical chemistry, biochemistry and molecular biology were used to accomplish these objectives. The bioorganic and physico-chemical properties of flocs and sediments, and the energy effects these structures are exposed to, play a role in the assessment of pathogen risk in water systems. Molecular approaches showed a significant difference in the composition of free-floating and particle-associated assemblages after simulated flow conditions and detected earlier differences in the dissociation of bacteria, compared to plating techniques. The analysis of integrons provided evidence for horizontal gene transfer events. Free-floating and particle-associated bacterial assemblages are potential genetic reservoirs for antibiotic resistance genes. This research shows that particles act as reservoirs for microorganisms, providing an early warning for potential indicators of human health risk in water systems and could determine the presence of future clinically relevant antibiotic resistance mechanisms and/or pathogenic microbial gene transfer in sediments, demonstrating the need to improve the existing protocols and methodologies that assess water quality. / Natural Sciences and Engineering Research Council of Canada (NSERC)
20

The Effect of Physicochemical Properties of Wastewater Flocs on UV Disinfection Following Hydrodynamic Particle Breakage

Best, Robert 20 December 2012 (has links)
This study showed that hydrodynamic particle breakage had potential as a method to help improve the disinfection of wastewater effluents. The physicochemical properties of flocs from four distinct effluents sources (combined sewer overflow, settled combined sewer overflow, primary effluent, and final effluent) were compared before and after hydrodynamic treatment. The use of hydrodynamic force to cause floc breakage was shown to be effective, though variable, across all source types. This variation in floc breakage did not have a significant impact on the UV disinfection achieved, as the UV dose kinetics were similar across samples from the same source type. The results of this study demonstrate how the physicochemical properties of floc are affected when exposed to shear force. These observations further the understanding of floc composition and behaviour when shear forces are applied while also providing evidence to indicate this process improves the performance of UV disinfection technology.

Page generated in 0.0344 seconds