• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 101
  • 44
  • 28
  • 21
  • 13
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 505
  • 88
  • 66
  • 55
  • 55
  • 47
  • 42
  • 41
  • 41
  • 40
  • 40
  • 39
  • 38
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Dendroclimatological investigation of river red gum (Eucalyptus camaldulensis Dehnhardt)

Argent, Robert Murray. January 1995 (has links)
Typescript. Includes bibliographical references (leaves [279]-287) This thesis examines the growth ring structure of Eucalyptus camaldulensis Dehnhardt and investigates links between ring features and the climatic conditions under which growth took place. Samples of E. camaldulensis from the Barmah Forest (near the River Murray in northern Victoria) were used in the study. E. camaldulensis growth is linked to periodic flooding, and the Barmah Forest contains sites that are frequently flooded. Wood samples were obtained from sites subject to different average flooding frequencies. Trees used in the study grew out of natural regeneration in the 1920's and 1930's and from regeneration trials in the early 1960's. Initial investigation of E. camaldulensis samples revealed ring-like features that were able to be traced on samples by eye. Microscopic investigation showed that there existed considerable variations in the properties of individual rings at different positions on the samples, and that the boundaries between rings were often indistinct. Further examination of E. camaldulensis microstructure was performed on samples from two trees that grew on sites with significantly different flooding regimes. These samples possessed features that formed rings, with rings being successfully matched between samples taken from different heights in the trees. As the complex microstructure of E. camaldulensis did not lend itself to standard dendroclimatological techniques, methods were developed to facilitate the comparison and matching of rings. These methods were also used in the successful matching of ring patterns with the output from a simple climate-based tree growth model. Two sets of E. camaldulensis samples (BS1, with 33 samples, and BS2, with 39 samples) were studied to assess the level of individual variability in ring patterns, and to provide a representative ring pattern for climate comparison. Following the development of methods for identifying samples with similar ring patterns, a subset of similar samples was selected from the BS1 set. A member of this subset was selected to provide a ring-width pattern upon which a representative pattern of ring features for BS1 was based. The rings of the BS2 samples possessed poorer ring definition than the BS1 samples and provided no new or different information. Consequently, the representative ring pattern for BS1 was used in a dendroclimatological investigation for the site. The ring pattern was matched with the output from two tree growth event models. Although rings were matched with growth events over a 27 year period, the high variability of individual ring features prevented matching of particular types of ring features with particular types of climatic events. An investigation of numerical methods for matching ring patterns with ring or growth event patterns, and for identifying samples with similar ring patterns, was performed using signal smoothing and filtering techniques and a dynamic time-warping procedure. Ring matching and identification of similar ring patterns was found to be most successful on samples where the ring patterns, expressed as continuous signals, had similar mean and amplitude values. The techniques were unsuccessful in the matching of signals of different form, such as continuous ring pattern signals and discontinuous growth event signals.
192

An assessment of a Stream Reach Inventory and Channel Stability Evaluation : predicting and detecting flood-induced change in channel stability

Mor��t, Stephanie L. 04 November 1997 (has links)
Pre-flood (1995), and post-flood (1996) channel stability surveys were conducted on 22 reaches along Oak Creek, Benton County, Oregon in an effort to note if the flood of February 1996 altered the channel and if the channel stability survey that was being used accurately predicted the channels resistance to change resulting from a flood. The channel stability survey that was used was the method described in the 'Channel Stability Evaluation and Stream Reach Inventory' designed by the USDA Forest Service, Northern Region, in Colorado (Pfankuch, 1978). This was a non-parametric study, based on an opportunity to reoccupy survey locations from a previous study. A model was proposed to describe the 1995 ratings as predictions for change should a flood event occur. This predicted change was compared to the actual change that occurred as a result of the 1996 flood in order to test the surveys ability to accurately predict change. Changes in the survey totals, the 15 channel stability indicator items that compose the survey, and the sediment distribution were evaluated within and between years at the reach, station and stream scale. An increase in the percentage of fine gravel occurred at all scales when post-flood and pre-flood sediment distribution was compared. Except for an increase in fine gravel, the stream remained similar to its pre-flood state. In 1995, the stream's channel stability was rated as 'fair', indicating that a moderate amount of change should take place if a flood occurred. The 1995 predictions for change did not match the actual change observed after the February 1996 flood at the three scales when defined by the survey totals. When independently evaluating the fifteen individual channel stability indicator items, a considerable amount of change was detected at the reach level. Although change occurred in the indicator items at each reach, the stream average for each of the independent indicator items was similar between the two years. This may indicate that, although change occurred at the reach level, the stream maintained its physical diversity after the flood. The survey method was unable to accurately predict changes to Oak Creek incurred by the February 1996 flood when viewed at the entire stream level, yet it may be more applicable at the reach level when viewing specific changes to channel stability indicator items. In general, the Stream Reach Inventory and Channel Stability Evaluation is designed for observational efficiency but does not have sufficient scientific basis or measurement precision to accurately predict the extent or type of channel change. / Graduation date: 1998
193

Muddy floods in the Belgian loess belt : problems and solutions

Evrard, Olivier 24 April 2008 (has links)
The first part of this thesis aims at defining the conditions triggering muddy floods in the Belgian loess belt. On average, each municipality is confronted with 3.6 muddy floods each year. Annual costs associated with their off-site impacts are estimated at € 16-172 millions for the entire Belgian loess belt. A topographic threshold is derived to predict the source areas of muddy floods. Furthermore, the storms required to produce a flood are, on average, smaller in May and June (25 mm) than between July and September (46 mm). This difference is explained by the variability of soil surface characteristics that determine the runoff potential of cultivated soils (soil cover by crops and residues, soil surface crusting and roughness). Steady state infiltration rates of cropland and grassed areas were characterised in the field using a 0.5 m2-portable rainfall simulator. Overall, grassed areas have a lower infiltration rate (16-23 mm h-1) than croplands (25-52 mm h-1). Muddy floods are mostly observed between May-September because of the coincidence of critical soil surface conditions for runoff generation with the most erosive storms. After an adaptation of its decision rules to the local conditions, the STREAM expert-based model provides satisfactory runoff/erosion predictions at the catchment scale. The second part of the thesis aims at evaluating the effectiveness of measures to control muddy floods. A modelling case-study showed that peak discharge was reduced by more than 40% by installing a grassed waterway and a dam at the outlet of a 300 ha-catchment. Monitoring the same catchment (2002-2007) demonstrated that the grassed waterway as well as three dams prevented any muddy flood in the downstream village despite the occurrence of several extreme storms (with a maximum return period of 150 years). Peak discharge was reduced by 69%. Specific sediment yield dropped from 3.5 t ha-1 yr-1 to a mean of 0.5 t ha-1 yr-1 after the installation of the control measures, thereby reducing drastically sediment transfer to the alluvial plain. Finally, a methodology is provided to implement grassed waterways and earthen dams in other dry valleys in the Belgian loess belt and comparable environments.
194

Hydrologic implications of 20th century warming and climate variability in the western U.S. /

Hamlet, Alan F. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 113-121).
195

Floods in Germany : analyses of trends, seasonality and circulation patterns

Petrow, Theresia January 2009 (has links)
Flood hazard estimations are conducted with a variety of methods. These include flood frequency analysis (FFA), hydrologic and hydraulic modelling, probable maximum discharges as well as climate scenarios. However, most of these methods assume stationarity of the used time series, i.e., the series must not exhibit trends. Against the background of climate change and proven significant trends in atmospheric circulation patterns, it is questionable whether these changes are also reflected in the discharge data. The aim of this PhD thesis is therefore to clarify, in a spatially-explicit manner, whether the available discharge data derived from selected German catchments exhibit trends. Concerning the flood hazard, the suitability of the currently used stationary FFA approaches is evaluated for the discharge data. Moreover, dynamics in atmospheric circulation patterns are studied and the link between trends in these patterns and discharges is investigated. To tackle this research topic, a number of different analyses are conducted. The first part of the PhD thesis comprises the study and trend test of 145 discharge series from catchments, which cover most of Germany for the period 1951–2002. The seasonality and trend pattern of eight flood indicators, such as maximum series and peak-over-threshold series, are analyzed in a spatially-explicit manner. Analyses are performed on different spatial scales: at the local scale, through gauge-specific analyses, and on the catchment-wide and basin scales. Besides the analysis of discharge series, data on atmospheric circulation patterns (CP) are an important source of information, upon which conclusions about the flood hazard can be drawn. The analyses of these circulation patterns (after Hess und Brezowsky) and the study of the link to peak discharges form the second part of the thesis. For this, daily data on the dominant CP across Europe are studied; these are represented by different indicators, which are tested for trend. Moreover, analyses are performed to extract flood triggering circulation patterns and to estimate the flood potential of CPs. Correlations between discharge series and CP indicators are calculated to assess a possible link between them. For this research topic, data from 122 meso-scale catchments in the period 1951–2002 are used. In a third part, the Mulde catchment, a mesoscale sub-catchment of the Elbe basin, is studied in more detail. Fifteen discharge series of different lengths in the period 1910–2002 are available for the seasonally differentiated analysis of the flood potential of CPs and flood influencing landscape parameters. For trend tests of discharge and CP data, different methods are used. The Mann-Kendall test is applied with a significance level of 10%, ensuring statistically sound results. Besides the test of the entire series for trend, multiple time-varying trend tests are performed with the help of a resampling approach in order to better differentiate short-term fluctuations from long-lasting trends. Calculations of the field significance complement the flood hazard assessment for the studied regions. The present thesis shows that the flood hazard is indeed significantly increasing for selected regions in Germany during the winter season. Especially affected are the middle mountain ranges in Central Germany. This increase of the flood hazard is attributed to a longer persistence of selected CPs during winter. Increasing trends in summer floods are found in the Rhine and Danube catchments, decreasing trends in the Elbe and Weser catchments. Finally, a significant trend towards a reduced diversity of CPs is found causing fewer patterns with longer persistence to dominate the weather over Europe. The detailed study of the Mulde catchment reveals a flood regime with frequent low winter floods and fewer summer floods, which bear, however, the potential of becoming extreme. Based on the results, the use of instationary approaches for flood hazard estimation is recommended in order to account for the detected trends in many of the series. Through this methodology it is possible to directly consider temporal changes in flood series, which in turn reduces the possibility of large under- or overestimations of the extreme discharges, respectively. / Hochwasserabschätzungen werden mit Hilfe einer Vielzahl von Methoden ermittelt. Zu diesen zählen Hochwasserhäufigkeitsanalysen, die hydrologische und hydraulische Modellierung, Abschätzungen zu maximal möglichen Abflüssen wie auch Langzeitstudien und Klimaszenarien. Den meisten Methoden ist jedoch gemein, dass sie stationäre Bedingungen der beobachteten Abflussdaten annehmen. Das heißt, in den genutzten Zeitreihen dürfen keine Trends vorliegen. Vor dem Hintergrund des Klimawandels und nachgewiesener Trends in atmosphärischen Zirkulationsmustern, stellt sich jedoch die Frage, ob sich diese Veränderungen nicht auch in den Abflussdaten widerspiegeln. Ziel der Dissertation ist daher die Überprüfung der Annahme von Trendfreiheit in Abflüssen und Großwetterlagen, um zu klären, ob die aktuell genutzten stationären Verfahren zur Hochwasserbemessung für die vorhandenen Daten in Deutschland geeignet sind. Zu prüfen ist des Weiteren, inwiefern regional und saisonal eine Verschärfung bzw. Abschwächung der Hochwassergefahr beobachtet werden kann und ob eindeutige Korrelationen zwischen Abflüssen und Großwetterlagen bestehen. Den ersten Schwerpunkt der vorliegenden Dissertation bildet die deutschlandweite Analyse von 145 Abflusszeitreihen für den Zeitraum 1951–2002. Acht Hochwasserindikatoren, die verschiedene Aspekte der Hochwasser-Charakteristik beleuchten, werden analysiert und bezüglich möglicher Trends getestet. Um saisonalen Unterschieden in der Hochwassercharakteristik der einzelnen Regionen gerecht zu werden, werden neben jährlichen auch saisonale Reihen untersucht. Die Analyse von Maximalreihen wird durch Schwellenwertanalysen ergänzt, die die Hochwasserdynamik bzgl. Frequenz und Magnitude detaillierter erfassen. Die Daten werden auf verschiedenen Skalen untersucht: sowohl für jeden einzelnen Pegel wie auch für ganze Regionen und Einzugsgebiete. Nicht nur die Analyse der Abflussdaten bietet die Möglichkeit, Bewertungen für die zukünftige Hochwasserabschätzung abzuleiten. Auch Großwetterlagen bilden eine bedeutende Informationsquelle über die Hochwassergefahr, da in der Regel nur ausgewählte Zirkulationsmuster die Entstehung von Hochwasser begünstigen. Die saisonal differenzierte Untersuchung der Großwetterlagen und die Prüfung einer Korrelation zu den Abflüssen an 122 mesoskaligen Einzugsgebieten bilden deshalb den zweiten Schwerpunkt der Arbeit. Hierzu werden tägliche Daten der über Europa dominierenden Großwetterlage (nach Hess und Brezowsky) mit Hilfe verschiedener Indikatoren untersucht. Analysen zum Hochwasserpotential der einzelnen Wetterlagen und weiterer Einflussfaktoren werden für das mesoskalige Einzugsgebiet der Mulde in einer separaten Studie durchgeführt. Für diese Detail-Studie stehen 15 Abflusszeitreihen verschiedener Länge im Zeitraum 1909–2002 zur Verfügung. Um die Daten von Abflüssen und Großwetterlagen bezüglich vorhandener Trends zu testen, werden verschiedene Methoden genutzt. Der Mann-Kendall Test wird mit einem Signifikanzniveau von 10% (zweiseitiger Test) angewendet, was statistisch sichere Bewertungen ermöglicht. Neben der Prüfung der gesamten Datenreihe werden multiple zeitlich-variable Trendanalysen mit Hilfe eines Resampling-Ansatzes durchgeführt. Darüber hinaus werden räumlich differenzierte Analysen durchgeführt, um die saisonale Hochwassercharakteristik einzelner Regionen besser zu verstehen. Diese werden durch Tests zur Feldsignifikanz der Trends ergänzt. Mit der vorliegenden Arbeit kann gezeigt werden, dass die Hochwassergefahr für einzelne Regionen im Winterhalbjahr signifikant steigt. Davon sind insbesondere Gebiete in Mitteldeutschland betroffen. Die Verschärfung der Hochwassergefahr durch eine längere Persistenz ausgewählter Großwetterlagen konnte ebenfalls für das Winterhalbjahr nachgewiesen werden. Sommerhochwasser zeigen zwar ebenfalls steigende, aber auch fallende Trends, die räumlich geclustert sind. Im Elbe- und Weser-Einzugsgebiet sinken die Abflüsse signifikant, im Donau- und Rheineinzugsgebiet steigen sie nachweisbar. Darüber hinaus ist eine signifikante Abnahme der Anzahl verschiedener Großwetterlagen sowohl im Sommer als auch im Winter zu verzeichnen. Bzgl. der Studie zum Mulde-Einzugsgebiet konnte ein zweigeteiltes Hochwasserregime nachgewiesen werden. In den Wintermonaten treten häufig kleine Hochwasser auf, die auch die Mehrheit der jährlichen Maximalwerte bilden. Sommerhochwasser sind seltener, können aber extreme Ausmaße annehmen. Ein Vergleich der geschätzten Jährlichkeiten mit verschiedenen Zeitreihen zeigt die Notwendigkeit der Berücksichtigung saisonaler Aspekte für die Bemessung von Hochwassern. Aufgrund der Ergebnisse müssen die bisher genutzten stationären Verfahren als nicht mehr geeignet bewertet werden. Es wird daher die Nutzung instationärer Verfahren zur Abschätzung von Extremhochwasser und der damit verbundenen Bemessung von Schutzmaßnahmen empfohlen, um den teilweise vorliegenden Trends in den Daten Rechnung zu tragen. Durch diesen Ansatz ist es möglich, zeitlich dynamische Veränderungen im Hochwassergeschehen stärker zu berücksichtigen. Darüber hinaus sollten saisonale Aspekte des Einzugsgebietes Eingang in die Gefahrenabschätzung finden.
196

Economic Impact of Natural Disasters : Tracking the Medium-Short term Growth Time Path in Asian Countries

Javed, Yielmaz January 2010 (has links)
Past decades have witnessed evidence to large-scale upheaval caused by natural disasters. Thus, there is a need for determination of mechanisms through which natural disasters may influence growth, especially for developing countries. This paper traces the medium-short run time path of agricultural and industrial output growth response to four types of disasters in Southern and Southeastern Asian countries. Disasters considered are floods, droughts, storms and earthquakes. The empirical results suggest heterogeneous effects for disasters as well as different economic sectors. In many cases disaster impact was delayed. Generally speaking, floods and droughts have a stronger effect while earthquakes and storms have a weaker one on disaggregated output growth. Floods have a predominantly posi-tive effect while droughts have a negative one on both agricultural and industrial sectors. Storms seem to show a stronger negative effect in the agricultural sector than in industrial sector hinting at existence of short lived indirect effects. Earth-quakes, on the other hand, presented ambiguous growth responses. / No
197

Flood Risk Perception in Tanzania : A Case of Flood Affected Arean in Dar es Salaam

Fintling, Carolina January 2006 (has links)
The main objective of this study is to understand and asses flood risk perception among people living in Msimbazi Valley in Das es Salaam, Tanzania. Many of the people I have interviewed are experiencing flooding every year but it is rarely considered disastrous. Looked at individually they may not be disasters but cumulatively they may be. The rapid urbanisation, in this part of the world, forces people to live on hazardous but central land because of the livelihood opportunities available there. The government and the local communities are well aware of the risk of floods in the area and are considered as a serious threat to the families. People are still living in these areas because they find the benefits big enough to make up the risks.
198

Economic Impact of Natural Disasters : Tracking the Medium-Short term Growth Time Path in Asian Countries

Javed, Yielmaz January 2010 (has links)
<p>Past decades have witnessed evidence to large-scale upheaval caused by natural disasters. Thus, there is a need for determination of mechanisms through which natural disasters may influence growth, especially for developing countries. This paper traces the medium-short run time path of agricultural and industrial output growth response to four types of disasters in Southern and Southeastern Asian countries. Disasters considered are floods, droughts, storms and earthquakes. The empirical results suggest heterogeneous effects for disasters as well as different economic sectors. In many cases disaster impact was delayed. Generally speaking, floods and droughts have a stronger effect while earthquakes and storms have a weaker one on disaggregated output growth. Floods have a predominantly posi-tive effect while droughts have a negative one on both agricultural and industrial sectors. Storms seem to show a stronger negative effect in the agricultural sector than in industrial sector hinting at existence of short lived indirect effects. Earth-quakes, on the other hand, presented ambiguous growth responses.</p> / No
199

History makes a river : morphological changes and human interference in the river Rhine, the Netherlands /

Hesselink, Annika W., January 2002 (has links)
Thesis (Ph. D.)--Utrecht University, 2002. / Includes bibliographical references (p. 163-171).
200

Sub-Centennial Scale Climatic and Hydrologic Variability in the Gulf of Mexico during the Early Holocene

LoDico, Jenna Meredith 20 January 2006 (has links)
Sediment core MD02-2550 from Orca Basin located in the northern Gulf of Mexico (GOM) provides a high-resolution early Holocene record of climatic and hydrologic changes from ~10.5 to 7 thousand calendar years before present (ka). Paired analyses of Mg/Ca and δ18O on the planktonic foraminifer Globigerinoides ruber (white variety, 250-355 μm) sampled at ~ 20 year resolution were used to generate proxy records of sea surface temperature (SST) and the δ18O of seawater in the GOM (δ18OGOM). The Mg/Ca-SST record contains an overall ~1.5 °C warming trend from 10.5 to 7 ka that appears to track the intensity of the annual insolation cycle and six temperature oscillations (0.5-2 °C), the frequency of which are consistent with those found in records of solar variability. The δ18OGOM record contains six ~ 0.5 ‰ oscillations from 10.5 to 7 ka that bear some resemblance to regional hydrologic records from Haiti and the Cariaco Basin, plus a -0.8 ‰ excursion that may be associated with the “8.2 ka event” recorded in Greenland air temperatures. The δ18OGOM record, if interpreted as a salinity proxy, suggest large salinity fluctuations (> 2 ‰) reflecting changes in evaporation-precipitation (E-P) and Mississippi River input to the GOM. Percent Globigerinoides sacculifer records from three cores in the GOM exhibit remarkably coherent changes, suggesting episodic centennial-scale incursions of Caribbean waters. Spectral analysis of the Mg/Ca-SST and the δ18OGOM time series indicate that surface water conditions may be influenced by solar variations because they share significant periods of variability with atmospheric Δ 14C near 700, 200, and 80-70 years. Our results add to the growing body of evidence that the sub-tropics were characterized by significant decadal to centennial-scale climatic and hydrologic variability during the early Holocene.

Page generated in 0.0258 seconds