• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 24
  • 19
  • 10
  • 7
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 210
  • 44
  • 31
  • 25
  • 22
  • 19
  • 18
  • 18
  • 17
  • 17
  • 14
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Can Fog and Rain Harvesting Secure Safe Drinking Water in Rural Cameroon? – Case study of Bafou (mountainous) and Mora (low-lying) villages

Mbomba Jiatsa, Zacharie Tite January 2010 (has links)
At the opposite of numerous countries in the world, despite its natural assets and its enormous surface and underground water potential, Cameroon is still trying to put down effective policies for the supply of safe drinking water for its rural population. Many initiatives to supply these communities through a national water distribution network have remained for the most dead letters or fruitless. A very high number of people still endanger their life daily by relying on archaic water supply techniques – when they are working – and by consuming unsafe water. This study therefore investigates if fog and rainwater harvesting could help in securing safe drinking water to these same rural communities, leaving the remaining demand - if any - to be provided by the existing but too often non-reliable supply system. Two pilot sites have been selected for their different climatic conditions; a village in the mountainous Western Province and another in the low-lying area of the Far-North Province of Cameroon. Average climatic data and basic topographical information from each location were used to determine the size and number of required collectors. The potential monthly water-yield at each site was then assessed using an actual climatic data series (8 years) and the theoretical performance simulated based on an increasing per capita daily consumption (10 – 40 l.d-1). An estimate of implementation cost is provided as part of the discussion on the feasibility of using both fog and rainwater harvesting as low-cost approaches to securing safe drinking water in Cameroon.
52

Vulkanisk svaveldimma : Risken att det drabbar Sverige

Andersson, Emmelie January 2011 (has links)
In the year 1783 a fissure eruption from Laki in the southern part of Iceland produced a large amount of volcanic gases during a period of eight months. The volcanic gases and aerosols spread across the northern hem sphere due to ideal weather conditions and had a substantial impact on the environment, human health and also climate effects. This, so called dry fog, caused severe health problems, which led to death casualties, killing animals, crops and other vegetation. The consequence was a widespread famine which was aggravated by a hard and long winter in 1783/84. Analysis shows that the Icelandic volcanoes are the primary risk to produce dry fog that can affect Sweden. The fog will most likely cause severe health effects, such as respiratory and cardiovascular problems. It will also cause damage to the vegetation, especially coniferous trees, and it may affect the water by acid chock. The fog may have great impact on the critical infrastructure in Sweden, depending on magnitude and duration. These types of volcanic hazards are difficult to predict and evaluate due to their sporadic nature and the sparse amount of data that is available. It is therefore important to focus on the consequences and develop the Swedish community preparedness on a general basis to handle this type of event.
53

Investigating sources of stream chloride near Kejimkujik National Park, southwestern Nova Scotia: A chlorine stable isotope approach

Bachiu, Timothy 08 September 2010 (has links)
Chlorine stable isotope analysis (?37Cl ) means of stream water (- 0.95 ‰, n = 22), rainwater (- 1.51 ‰, n = 12), fog water (- 1.08 ‰, n = 7) and silicate mineral bound chloride (+ 0.13 ‰, n = 3) are used in an isotope mass balance approach to estimate sources of stream chloride. During summer-baseflow conditions, the chloride budget of two catchments in southwestern Nova Scotia is approximately 39 % from rainfall, 37 % from fog water and 24 % from rock/water interactions. The results of a significant source of geological chloride suggest the use of chloride in stream water as a proxy for marine derived sulphate may not be valid. This conclusion implies that anthropogenic sources of sulphate to acid sensitive ecosystems of southwestern Nova Scotia have been underestimated when chloride is assumed to be a conservative ion in the hydrological cycle.
54

Electrical Characteristics of Aged Composite Insulators

Zhou, JianBin January 2003 (has links)
Composite insulators are widely being used in power industry to alternate traditional porcelain-based insulators for their advantages, including better pollution performance, low maintenance cost, light weight, compact line design. However, due to the short application history and experience, the degradation of composite insulators in natural environment is a big concern for the power utilities. The knowledge on the degradation of composite insulators is being studied world wide. The methods to assess the working conditions of composite insulators are being studied and created. In Queensland University of Technology (QUT), the approach based on chemical analysis methods was first developed. The work in this thesis based on the previous research work is focused on correlating electrical characteristics with chemical analysis results of the composite insulators and physical observations results. First,the electrical characteristics of composite insulators were presented and analysed, including leakage current, cumulative current, peaks of leakage current, the statistic results of the leakage current. Among them, the characteristics of leakage current were mainly studied. The shape of waveforms was found to relate to the degree of discharge activities of the composite insulators. The waveforms analysed by FFT revealed that the odd harmonic components became obvious during the discharge activities. The correlations between the electrical characteristics of composite insulators and chemical analysis results showed that the composition of composite insulators plays significant roles in terms of electrical performance. The oxidation index (O.I.) and the ester/ketone ratio (E/K) differentiated the different degradation reasons of the composite insulators in the test conditions. Finally, the thesis presents one approach, which aims to assess the surface conditions of composite insulators in an easy manner and in short time.
55

Efficient Visibility Restoration Method Using a Single Foggy Image in Vehicular Applications

Ahmadvand, Samaneh 26 November 2018 (has links)
Foggy and hazy weather conditions considerably effect visibility distance which impacts speed, flow of traffic, travel time delay and increases the risk accidents. Bad weather condition is considered a cause of road accidents, since it the poor conditions can effect drivers field of vision. In addition, fog, haze and mist can have negative influences on visual applications in the open air since they decrease visibility by lowering the contrast and whitening the visible color palette. The poor visibility in these images leads to some failures in recognition and detection of the outdoor object systems and also in Intelligent Transportation Systems (ITS). In this thesis, we propose an image visibility restoration algorithm under foggy weather in intelligent transportation systems. Various camera based Advanced Driver Assistant Systems (ADAS), which can be improved by applying the visibility restoration algorithm, have been applied in this field of study to enhance vehicle safety by displaying the image from a frontal camera to driver after visibility enhancement. To remove fog, automatic methods have been proposed which are categorized into two approaches based on the number of input images: 1) methods which are using polarizing filters, 2) methods which are using captured images from different fog densities. In both of these approaches multiple images are required which have to be taken from exactly the same point of view. While these applications can generate good results, their requirements make them impractical, particularly in real time applications, such as intelligent transportation systems. Therefore, in this thesis we introduce a high-performance visibility restoration algorithm only using a single foggy image which applies a recursive filtering to preserve the edge of images and videos in real time and also compute depth map of the scene to restore image. The applied edge preserving filtering is based on a domain transform in which 1-Dimensional edge-preserving filtering is performed by preserving the geodesic distance between points on the curves that is adaptable with wrapping the input signal. The proposed algorithm can be applied in intelligent transportation system applications, such as Advanced Driver Assistance Systems (ADAS). The main features of the proposed algorithm are its speed, which plays a main role in real time applications, since 1-Dimensional operations are used in the applied filtering leads to remarkable speedups in comparison with classical median filters and robust bilateral lfilters. Potential of memory saving is considered as another one advantage of the proposed model and also the parameters of applied edge-preserving filtering do not effect on its computational cost. It is the first edge-preserving filter for color images with arbitrary scales in real time. The proposed algorithm is also able to handle both color and gray-level images and achieves the restored image without the presence of artifacts in comparison with other state-of-the-art algorithms.
56

Improving Soft Real-time Performance of Fog Computing

Struhar, Vaclav January 2021 (has links)
Fog computing is a distributed computing paradigm that brings data processing from remote cloud data centers into the vicinity of the edge of the network. The computation is performed closer to the source of the data, and thus it decreases the time unpredictability of cloud computing that stems from (i) the computation in shared multi-tenant remote data centers, and (ii) long distance data transfers between the source of the data and the data centers. The computation in fog computing provides fast response times and enables latency sensitive applications. However, industrial systems require time-bounded response times, also denoted as RT. The correctness of such systems depends not only on the logical results of the computations but also on the physical time instant at which these results are produced. Time-bounded responses in fog computing are attributed to two main aspects: computation and communication.    In this thesis, we explore both aspects targeting soft RT applications in fog computing in which the usefulness of the produced computational results degrades with real-time requirements violations. With regards to the computation, we provide a systematic literature survey on a novel lightweight RT container-based virtualization that ensures spatial and temporal isolation of co-located applications. Subsequently, we utilize a mechanism enabling RT container-based virtualization and propose a solution for orchestrating RT containers in a distributed environment. Concerning the communication aspect, we propose a solution for a dynamic bandwidth distribution in virtualized networks.
57

Enabling container failover by extending current container migration techniques

Terneborg, Martin January 2021 (has links)
Historically virtual machines have been the backbone of the cloud-industry, allowing cloud-providers to offer virtualized multi-tenant solutions. A key aspect of the cloud is its flexibility and abstraction of the underlying hardware. Virtual machines can enhance this aspect by enabling support for live migration and failover. Live migration is the process of moving a running virtual machine from one host to another and failover ensures that a failed virtual machine will automatically be restarted (possibly on another host). Today, as containers continue to increase in popularity and make up a larger portion of the cloud, often replacing virtual machines, it becomes increasingly important for these processes to be available to containers as well. However, little support for container live migration and failover exists and remains largely experimental. Furthermore, no solution seems to exists that offers both live migration and failover for containers in a unified solution. The thesis presents a proof-of-concept implementation and description of a system that enables support for both live migration and failover for containers by extending current container migration techniques. It is able to offer this to any OCI-compliant container, and could therefore potentially be integrated into current container and container orchestration frameworks. In addition, measurements for the proof-of-concept implementation are provided and used to compare the proof-of-concept implementation to a current container migration technique. Furthermore, the thesis presents an overview of the history and implementation of containers, current migration techniques, and metrics that can be used for measuring different migration techniques are introduced. The paper concludes that current container migration techniques can be extended in order to support both live migration and failover, and that in doing so one might expect to achieve a downtime equal to, and total migration time lower than that of pre-copy migration. Supporting both live migration and failover, however, comes at a cost of an increased amount of data needed to be transferred between the hosts.
58

DFCV: A Novel Approach for Message Dissemination in Connected Vehicles Using Dynamic Fog

Paranjothi, Anirudh, Khan, Mohammad S., Atiquzzaman, Mohammed 01 January 2018 (has links)
Vehicular Ad-hoc Network (VANET) has emerged as a promising solution for enhancing road safety. Routing of messages in VANET is challenging due to packet delays arising from high mobility of vehicles, frequently changing topology, and high density of vehicles, leading to frequent route breakages and packet losses. Previous researchers have used either mobility in vehicular fog computing or cloud computing to solve the routing issue, but they suffer from large packet delays and frequent packet losses. We propose Dynamic Fog for Connected Vehicles (DFCV), a fog computing based scheme which dynamically creates, increments and destroys fog nodes depending on the communication needs. The novelty of DFCV lies in providing lower delays and guaranteed message delivery at high vehicular densities. Simulations were conducted using hybrid simulation consisting of ns-2, SUMO, and Cloudsim. Results show that DFCV ensures efficient resource utilization, lower packet delays and losses at high vehicle densities.
59

A Stable Isotope Approach to Investigative Ecohydrological Processes in Namibia

Kaseke, Kudzai Farai 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Drylands cover 40% of the earth’s terrestrial surface supporting over 2 billion people, the majority of whom reside in developing nations characterised by high population growth rates. This imposes pressure on the already limited water resources and in some dryland regions such as southern Africa, the origins and dynamics of rainfall are not well understood. Research has also tended to focus on factors limiting (e.g., rainfall) than sustaining productivity in drylands. However, non-rainfall water (NRW) e.g., fog and dew can supplement and/or exceed rainfall in these environments and could potentially be exploited as potable water resources. Much remains unknown in terms of NRW formation mechanisms, origins, evolution, potability and potential impact of global climate change on these NRW dependent ecosystems. Using Namibia as a proxy for drylands and developing nations, this dissertation applies stable isotopes of water (δ2H, δ18O, δ17O and d-excess), cokriging and trajectory analysis methods to understand ecohydrological processes. Results suggest that locally generated NRW may be a regular occurrence even in coastal areas such as the Namib Desert, and that what may appear as a single fog event may consist of different fog types co-occurring. These results are important because NRW responses to global climate change is dependent on the source, groundwater vs. ocean, and being able to distinguish the two will allow for more accurate modelling. I also demonstrate, that fog and dew formation are controlled by different fractionation processes, paving the way for plant water use strategy studies and modelling responses to global climate change. The study also suggests that current NRW harvesting technologies could be improved and that the potability of this water could raise some public health concerns related to trace metal and biological contamination. At the same time, the dissertation concludes that global precipitation isoscapes do not capture local isotope variations in Namibia, suggesting caution when applied to drylands and developing nations. Finally, the dissertation also reports for the first time, δ17O precipitation results for Namibia, novel isotope methods to differentiate synoptic from local droughts and suggests non-negligible moisture contributions from the Atlantic Ocean due to a possible sub-tropical Atlantic Ocean dipole.
60

Design and Performance Analysis of a Sonar Data Acquisition System

Cheema, Saad Saadat 24 October 2019 (has links)
No description available.

Page generated in 0.0185 seconds