• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards an Understanding of the Interaction of Hair with the Depositional Environment

Wilson, Andrew S., Dixon, Ronald A., Edwards, Howell G.M., Farwell, Dennis W., Janaway, Robert C., Pollard, A. Mark, Tobin, Desmond J. January 2001 (has links)
No / There is developing interest in the analytical use of human hair from archaeological contexts in key research areas such as DNA, trace elemental and isotopic analyses. Other human tissues, especially bone, that have been used for trace element, isotopic and DNA analyses have had extensive study concerning their diagenesis, but this has not been done for hair. Consideration must be given to the complex interaction of hair with its buried environment, thereby laying a firm basis for the use of hair in future research. Since human hair is known to survive under a diverse range of environmental conditions, a pilot study has investigated the basic processes of hair degradation, using samples from different climatic zones and burial types. Variation in the degree of preservation of archaeological hair was characterized by light microscopy, electron microscopy, and FT-Raman spectroscopy, relating morphological change of the surface and internal structure of hair to its biochemical integrity. The results demonstrate a breakdown of cortical cell boundaries and disruption of the cuticular layering, coupled with infiltration of material from the burial matrix that suggests a progressive loss of cohesion that is in part due to microbiological activity. Medullated hair is shown to be more susceptible to physical breakdown by providing two routes for microbial and environmental attack. At the molecular level the proteinaceous component undergoes alteration, and the S-S cystine linkages, responsible for the strength and resilience of hair in living individuals, are lost.
2

The Degradation of Human Hair Studied by FT-Raman Spectroscopy

Edwards, Howell G.M., Farwell, Dennis W., Wilson, Andrew S. January 1998 (has links)
No
3

Extended Mercerization Prior to Carboxymethyl Cellulose Preparation

Almlöf, Heléne January 2010 (has links)
Carboxymethyl cellulose (CMC) is produced commercially in a two-stage process consisting of a mercerization stage, where the pulp is treated with alkali in a water alcohol solution, followed by an etherification stage in which monochloroacetic acid is added to the pulp slurry. In this thesis an extended mercerization stage of a spruce ether pulp was investigated where the parameters studied were the ratio of cellulose I and II, concentration of alkali, temperature and retention time. The influence of the mercerization stage conditions on the etherification stage, were evaluated as the degree of substitution (DS) of the resulting CMC and the filterability of CMC dissolved in water at a concentration of 1%. The DS results suggested that the NaOH concentration in the mercerization stage was the most important of the parameters studied. When the NaOH concentration in the mercerization step was low (9%), a high cellulose II content in the pulp used was found to have no negative impact on the DS of the resulting CMC compared with pulps with only cellulose I. However, when the NaOH concentration was high (27.5%), pulps with high content of cellulose II showed a lower reactivity than those with only cellulose I with respect to the DS of the CMC obtained after a given charge of NaMCA. The results obtained from the filtration ability study of CMC water solutions suggested that both the amount of cellulose II in the original pulp and the temperature had a negative influence on the filtration ability whereas the NaOH concentration in the mercerization stage had a positive influence. The filtration ability was assumed to be influenced highly by the presence of poorly reacted cellulose segments. A retention time between 1-48 h in the mercerization stage had no effect on either the DS or the filtration ability of the CMC. Using NIR FT Raman spectroscopy molecular structures of CMC and its gel fraction were analyzed with respect to the conditions used in the extended mercerization stage. Here it was found that the alkaline concentration had a very strong influence on the following etherification reaction. FT Raman spectra of CMC samples and their gel fractions prepared with low NaOH concentrations (9%) in the mercerization stage indicated an incomplete transformation of cellulose to Na-cellulose before carboxymethylation to CMC. Low average DS values of the CMC, i.e. between 0.42 and 0.50, were yielded. Such CMC dissolved in water caused very thick and semi solid gum-like gels, probably due to an uneven distribution of substituting groups along the cellulose backbone. FT Raman spectra of CMC mercerized with alkaline concentrations at 18.25 and 27.5% in the mercerization stage indicated, however, that all of the cellulose molecules were totally transferred to CMC of high DS, i.e. between 0.88 and 1.05. When dissolved in water such CMC caused gels when they were prepared from ether pulp with a high fraction of cellulose II.
4

Basic evidence for epidermal H2O2/ONOO--mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS

Schallreuter, Karin U., Salem, Mohamed M.A., Holtz, Sarah, Panske, Angela 08 1900 (has links)
no / Nonsegmental vitiligo (NSV) is characterized by loss of inherited skin color. The cause of the disease is still unknown despite accumulating in vivo and in vitro evidence of massive epidermal oxidative stress via H2O2 and peroxynitrite (ONOO−) in affected individuals. The most favored hypothesis is based on autoimmune mechanisms. Strictly segmental vitiligo (SSV) with dermatomal distribution is a rare entity, often associated with stable outcome. Recently, it was documented that this form can be associated with NSV (mixed vitiligo). We here asked the question whether ROS and possibly ONOO− could be players in the pathogenesis of SSV. Our in situ results demonstrate for the first time epidermal biopterin accumulation together with significantly decreased epidermal catalase, thioredoxin/thioreoxin reductase, and MSRA/MSRB expression. Moreover, we show epidermal ONOO− accumulation. In vivo FT-Raman spectroscopy reveals the presence of H2O2, methionine sulfoxide, and tryptophan metabolites; i.e., N-formylkynurenine and kynurenine, implying Fenton chemistry in the cascade (n=10). Validation of the basic data stems from successful repigmentation of skin and eyelashes in affected individuals, regardless of SSV or segmental vitiligo in association with NSV after reduction of epidermal H2O2 (n=5). Taken together, our contribution strongly supports H2O2/ONOO-mediated stress in the pathogenesis of SSV. Our findings offer new treatment intervention for lost skin and hair color.—Schallreuter, K. U., Salem, M. A. E. L., Holtz, S., Panske, A. Basic evidence for epidermal H2O2/ONOO−-mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS.
5

Determinação de parâmetros seguros e efetivos do laser de CO2 (?= 10,6 ?m) na redução da desmineralização da dentina radicular - Estudo in vitro / Determination of safe and effective parameters of CO2 laser (?= 10.6 ?m) on the reduction of root dentin demineralization - an in vitro study

Zaroni, Wanessa Christine de Souza 28 June 2007 (has links)
Estudos têm mostrado que a dentina pode ser modificada pelo laser pulsado de CO2 tornando-a um substrato mais ácido-resistente. Este estudo in vitro se propôs a estabelecer parâmetros seguros e efetivos de um laser pulsado de CO2 com comprimento de onda 10,6 ?m e avaliou seu efeito sobre a morfologia superficial e a composição química, assim como sobre a redução da desmineralização da dentina radicular. Noventa e cinco superfícies radiculares humanas obtidas de quarenta e oito terceiros molares foram aleatoriamente divididas em 5 grupos (n=15 para o grupo de controle e n=20 para os grupos irradiados com laser): G1 - Nenhum tratamento (controle), G2 - 2,5 J/cm2, G3 - 4,0 J/cm2, G4 - 5,0 J/cm2 e G5 - 6,0 J/cm2. A temperatura intrapulpar foi mensurada por meio de análise termográfica com termômetro de radiação infravermelha, as modificações químicas, por meio de espectroscopia FT-Raman e as alterações morfológicas por meio de microscopia eletrônica de varredura. Após o tratamento da superfície, os espécimes foram submetidos a 7 dias de ciclagem de pH, permanecendo diariamente em soluções desmineralizadora e remineralizadora por 3 h e 21 h, respectivamente. Após o desafio ácido, os espécimes foram seccionados e a perda mineral foi determinada por meio do teste de microdureza Knoop (5 g, 5 seg) em profundidades pré-determinadas em relação à superfície de dentina radicular (20 ?m - 275 ?m). Para todos os grupos irradiados, as mudanças de temperatura intrapulpar mostraram-se abaixo de 0,9°C. A espectroscopia FT-Raman não evidenciou alterações químicas entre os espécimes não-irradiados e os irradiados com laser de CO2. Entretanto a análise em microscópio eletrônico de varredura indicou que as densidades de energia a partir de 4,0 J/cm2 foram suficientes para induzir mudanças morfológicas na dentina radicular. Adicionalmente, para as densidades de energia iguais ou superiores a 4,0 J/cm2, foram observados efeitos de redução da desmineralização da dentina radicular induzidos pela irradiação laser. Pode-se concluir que densidades de energia em torno de 4,0 a 6,0 J/cm2 podem ser aplicadas à dentina radicular, a fim de promover mudanças morfológicas e reduzir a reatividade ácida da mesma, sem comprometer a vitalidade pulpar. / Studies have shown that dentin can be modified by pulsed CO2 laser to form a more acid-resistant substrate. This in vitro research aimed to establish safe parameters of a pulsed study 10.6 ?m CO2 laser and evaluate its effect on chemical and morphological features in dentinal surface, as well as on the reduction of root dentin demineralization. Ninety five human root surfaces obtained from forty eight third molars were randomly divided in 5 groups (n=15 for control group and n=20 for laser groups): G1 - No treatment (control), G2 -2.5 J/cm2, G3 - 4.0 J/cm2, G4 - 5.0 J/cm2 and G5 - 6.0 J/cm2. Intrapulpal temperature was evaluated during dentin irradiation by an infrared thermometer, chemical modifications by FT-Raman spectroscopy, and morphological modifications by SEM. After the surface treatment, the specimens were submitted to a 7 days pH-cycling model, consisted of the daily immersion in demineralizing and remineralizing solutions for 3 h and 21 h, respectively. After the acid challenge, the specimens were sectioned and the mineral loss was determined by means of cross-sectional Knoop microhardness (5 g, 5 sec) at different depths from the dentin root surface (20 ?m - 275 ?m). For all irradiated groups, intrapulpal temperature changes were below 0.9°C. FT-Raman spectroscopy did not show chemical changes in the irradiated specimens. However, scanning electron microscopy images indicated that fluences as low as 4.0 J/cm2 were sufficient to induce morphological changes in root dentin. Additionally, for fluences reaching or exceeding 4.0 J/cm2, laser-induced inhibitory effects on root dentin demineralization were observed. It was thus concluded that the laser energy density in the range of 4.0 to 6.0 J/cm2 could be applied to dental root dentin in order to produce morphological changes and reduce the acid reactivity of dentin without compromising the pulp vitality.
6

Mercerization and Enzymatic Pretreatment of Cellulose in Dissolving Pulps

Almlöf Ambjörnsson, Heléne January 2013 (has links)
This thesis deals with the preparation of chemically and/or enzymatically modified cellulose. This modification can be either irreversible or reversible. Irreversible modification is used to prepare cellulose derivatives as end products, whereas reversible modification is used to enhance solubility in the preparation of regenerated cellulose. The irreversible modification studied here was the preparation of carboxymethyl cellulose (CMC) using extended mercerization of a spruce dissolving pulp. More specifically the parameters studied were the effect of mercerization at different proportions of cellulose I and II in the dissolving pulp, the concentration of alkali, the temperature and the reaction time. The parameters evaluated were the degree of substitution, the filterability and the amount of gel obtained when the resulting CMC was dissolved in water. Molecular structures of CMC and its gel fractions were analysed by using NIR FT Raman spectroscopy. It was found that the alkali concentration in the mercerization stage had an extensive influence on the subsequent etherification reaction. FT Raman spectra of CMC samples and their gel fractions prepared with low NaOH concentrations (9%) in the mercerization stage indicated an incomplete transformation of cellulose to Na-cellulose before carboxymethylation to CMC. Low average DS values of the CMC, i.e. between 0.42 and 0.50 were obtained. Such CMC dissolved in water resulted in very thick and semi solid gum-like gels, probably due to an uneven distribution of substituents along the cellulose backbone. FT Raman spectra of CMC samples and their gel fractions mercerized at higher alkaline concentration, i.e. 18.25 and 27.5% in the mercerization stage, indicated on the other hand a complete transformation of cellulose to Na-cellulose before carboxymethylation to CMC. Higher average DS values of the CMC, i.e. between 0.88 and 1.05 were therefore obtained. When dissolved in water such CMC caused gel formation especially when prepared from dissolving pulp with a high fraction of cellulose II. The reversible modification studied was the dissolution of cellulose in NaOH/ZnO. Here the effect of enzyme pretreatment was investigated by using two mono-component enzymes; namely xylanase and endoglucanase, used in consecutive stages. It was found that although the crystallinity and the specific surface area of the dissolving pulp sustained minimal change during the enzymatic treatment; the solubility of pulp increased in a NaOH/ZnO solution from 29% for untreated pulp up to 81% for enzymatic pretreated pulp. / Baksidetext Cellulose can be chemically and/or enzymatically modified. Irreversible modification is used to prepare cellulose derivatives as end products, reversible modification to enhance solubility in the preparation of regenerated cellulose. The irreversible modification studied here was the preparation of carboxymethyl cellulose (CMC) using extended mercerization of a spruce dissolving pulp. More specifically the parameters studied were the effect of mercerization at different proportions of cellulose I and II in the dissolving pulp, the concentration of alkali, the temperature and the reaction time. It was found that the alkali concentration in the mercerization stage had an extensive influence on the subsequent etherification reaction. The content of cellulose II had little effect on degree of substitution (DS) at low NaOH concentration, but tended to decrease DS at higher NaOH concentration in both cases compared with cellulose I. It was also found that the content of cellulose II correlates with the gel formation obtained when the CMC is dissolved in water. The reversible modification studied was the dissolution of cellulose in NaOH/ZnO. Here the effect of enzyme pretreatment was investigated by using two mono-component enzymes; namely xylanase and endoglucanase, used in consecutive stages. It was found that the solubility of pulp increased in a NaOH/ZnO solution from 29% for untreated pulp up to 81% for enzymatic pretreated pulp.
7

Determinação de parâmetros seguros e efetivos do laser de CO2 (?= 10,6 ?m) na redução da desmineralização da dentina radicular - Estudo in vitro / Determination of safe and effective parameters of CO2 laser (?= 10.6 ?m) on the reduction of root dentin demineralization - an in vitro study

Wanessa Christine de Souza Zaroni 28 June 2007 (has links)
Estudos têm mostrado que a dentina pode ser modificada pelo laser pulsado de CO2 tornando-a um substrato mais ácido-resistente. Este estudo in vitro se propôs a estabelecer parâmetros seguros e efetivos de um laser pulsado de CO2 com comprimento de onda 10,6 ?m e avaliou seu efeito sobre a morfologia superficial e a composição química, assim como sobre a redução da desmineralização da dentina radicular. Noventa e cinco superfícies radiculares humanas obtidas de quarenta e oito terceiros molares foram aleatoriamente divididas em 5 grupos (n=15 para o grupo de controle e n=20 para os grupos irradiados com laser): G1 - Nenhum tratamento (controle), G2 - 2,5 J/cm2, G3 - 4,0 J/cm2, G4 - 5,0 J/cm2 e G5 - 6,0 J/cm2. A temperatura intrapulpar foi mensurada por meio de análise termográfica com termômetro de radiação infravermelha, as modificações químicas, por meio de espectroscopia FT-Raman e as alterações morfológicas por meio de microscopia eletrônica de varredura. Após o tratamento da superfície, os espécimes foram submetidos a 7 dias de ciclagem de pH, permanecendo diariamente em soluções desmineralizadora e remineralizadora por 3 h e 21 h, respectivamente. Após o desafio ácido, os espécimes foram seccionados e a perda mineral foi determinada por meio do teste de microdureza Knoop (5 g, 5 seg) em profundidades pré-determinadas em relação à superfície de dentina radicular (20 ?m - 275 ?m). Para todos os grupos irradiados, as mudanças de temperatura intrapulpar mostraram-se abaixo de 0,9°C. A espectroscopia FT-Raman não evidenciou alterações químicas entre os espécimes não-irradiados e os irradiados com laser de CO2. Entretanto a análise em microscópio eletrônico de varredura indicou que as densidades de energia a partir de 4,0 J/cm2 foram suficientes para induzir mudanças morfológicas na dentina radicular. Adicionalmente, para as densidades de energia iguais ou superiores a 4,0 J/cm2, foram observados efeitos de redução da desmineralização da dentina radicular induzidos pela irradiação laser. Pode-se concluir que densidades de energia em torno de 4,0 a 6,0 J/cm2 podem ser aplicadas à dentina radicular, a fim de promover mudanças morfológicas e reduzir a reatividade ácida da mesma, sem comprometer a vitalidade pulpar. / Studies have shown that dentin can be modified by pulsed CO2 laser to form a more acid-resistant substrate. This in vitro research aimed to establish safe parameters of a pulsed study 10.6 ?m CO2 laser and evaluate its effect on chemical and morphological features in dentinal surface, as well as on the reduction of root dentin demineralization. Ninety five human root surfaces obtained from forty eight third molars were randomly divided in 5 groups (n=15 for control group and n=20 for laser groups): G1 - No treatment (control), G2 -2.5 J/cm2, G3 - 4.0 J/cm2, G4 - 5.0 J/cm2 and G5 - 6.0 J/cm2. Intrapulpal temperature was evaluated during dentin irradiation by an infrared thermometer, chemical modifications by FT-Raman spectroscopy, and morphological modifications by SEM. After the surface treatment, the specimens were submitted to a 7 days pH-cycling model, consisted of the daily immersion in demineralizing and remineralizing solutions for 3 h and 21 h, respectively. After the acid challenge, the specimens were sectioned and the mineral loss was determined by means of cross-sectional Knoop microhardness (5 g, 5 sec) at different depths from the dentin root surface (20 ?m - 275 ?m). For all irradiated groups, intrapulpal temperature changes were below 0.9°C. FT-Raman spectroscopy did not show chemical changes in the irradiated specimens. However, scanning electron microscopy images indicated that fluences as low as 4.0 J/cm2 were sufficient to induce morphological changes in root dentin. Additionally, for fluences reaching or exceeding 4.0 J/cm2, laser-induced inhibitory effects on root dentin demineralization were observed. It was thus concluded that the laser energy density in the range of 4.0 to 6.0 J/cm2 could be applied to dental root dentin in order to produce morphological changes and reduce the acid reactivity of dentin without compromising the pulp vitality.
8

A low-cost photonic method for monitoring different production processes involving contaminating materials using Fourier-Transform Raman spectroscopy / Une méthode photonique à faible coût pour le suivi des processus de production impliquant des matières contaminantes en utilisant spectroscopie Raman à transformée de Fourier

Ortega Clavero, Valentin 11 July 2014 (has links)
Dans ce travail de thèse, un spectromètre FT-Raman a été développé dans l'intention de mesurer les substances dangereuses de manière propre et durable permettant à l'utilisateur un cout d'utilisation réduit (approche low cost). Dans ce but, le système FT- Raman a été développé en utilisant une combinaison originale de composants conventionnels d'optoméchatronique avec laquelle nous proposons une méthode d'évaluation du spectre. Ce système FT-Raman proposé n'inclut aucun composants spécialisé coûteux et permet la détection de la diffusion Raman et le suivi du chemin optique. Le dispositif a été testé lors d'analyses d'une série de composants chimiques standards largement utilisés dans la spectroscopie Raman (certains d'entre eux sont connus pour leur impact négatif sur la santé et l'environnement). Les résultats du spectre obtenus avec notre dispositif ont confirmé les valeurs signalées par le spectre Raman standard. Une comparaison des spectres avec des appareils commercialisés mesurant le FT-Raman a été également faite, et les résultats indiquent que notre combinaison de composants conventionnels et l'application de notre méthode d'évaluation peuvent être utilisées dans certaines surveillances d'applications demandant un haut degré de précision et la résolution sans toutefois présenter la charge financière que l'achat d'un instrument classique de mesure pourrait représenter. / In this doctoral research project, a Fourier Trasform Raman spectrometer (FT-Raman spectrometer) instrument has been developed with the intention to perform the monitoring of certain materials having a contaminating and harmful nature, in a clean and sustainable manner, and without significantly affecting the financial aspect of the user (low-cost approach). For this purpose, the proposed FT-Raman system has been developed by using an original combination of conventional hardware (optomechatronics) parts and a method that we propose for spectral evaluations. In this FT-Raman system that we propose no specialized and costly hardware parts for optical path compensation, Raman scattering detection, optical path tracking, etc. have been used. The proposed FT-Raman device has been tested by analyzing a series of chemical components widely used in Raman spectroscopy as standard reference materials (some of them are also known due to their negative impact on health or on environment). The resulting spectra obtained using our proposed device have greatly agreed with the values of the standard Raman spectra. A comparison with spectral outputs from state-of-the-art FT-Raman devices has been also performed. These results indicate that our ``flexible" combination of conventional hardware parts and the applied evaluation method that we propose can be used in certain monitoring applications requiring a high degree of frequency accuracy and spectral resolution, without having the burden of a considerable expenditure that such a non-dispersive "classical" instrument might represent.

Page generated in 0.0746 seconds