• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A database for facial behavioural analysis

Yap, M.H., Ugail, Hassan, Zwiggelaar, R. January 2013 (has links)
No / There is substantial interest in detection of human behaviour that may reveal people with deliberate malicious intent, who are engaging in deceit. Technology exists that is able to detect changes in facial patterns of movement and thermal signatures on the face. However, there is data deficiency in the research community for further study. Therefore this project aims to overcome the data deficiency in psychology study and algorithms development. A within-subjects design experiment was conducted, using immigration as a scenario for investigate participants in control and experimental conditions. A random sample of 32 volunteers were recruited, their age group is within 18 - 33. The study design required participants to answer questions on two topics, one as themselves and one as a predefined character. Data regarding visible and thermal images of facial movement and behaviour were collected. A rich FACS-coded database with high quality thermal images was established. Finally, recommendations for development and subsequent implementation of the facial analysis technique were made.
2

Method of modelling facial action units using partial differential equations

Ugail, Hassan, Ismail, N.B. January 2016 (has links)
No / In this paper we discuss a novel method of mathematically modelling facial action units for accurate representation of human facial expressions in 3- dimensions. Our method utilizes the approach of Facial Action Coding System (FACS). It is based on a boundary-value approach, which utilizes a solution to a fourth order elliptic Partial Differential Equation (PDE) subject to a suitable set of boundary conditions. Here the PDE surface generation method for human facial expressions is utilized in order to generate a wide variety of facial expressions in an efficient and realistic way. For this purpose, we identify a set of boundary curves corresponding to the key features of the face which in turn define a given facial expression in 3-dimensions. The action units (AUs) relating to the FACS are then efficiently represented in terms of Fourier coefficients relating to the boundary curves which enables us to store both the face and the facial expressions in an efficient way.
3

Klassificering av engagemangsnivå hos en samtalsdeltagare med hjälp av maskininlärning / Classification of interlocutor engagement using machine learning

Ljung, Mikael, Månsson, Linnea January 2019 (has links)
The work presented in this study is based on the long-term goal of developing a social robot that can be involved in leading a conversation in a language café. In detail, the study has investigated whether it is possible to classify involvement with a conversation participant based on its facial expression and gaze two factors that previous studies have shown to be central to human engagement. To perform the assessment, the software Openface has extracted said parameters from a previous field study which has then been processed with the machine learning model Support Vector Machine. After a lot of hyperparameter tuning, the final model managed to predict engagement on a three-point scale with 54.5% accuracy. Furthermore, the study has also examined the potential of the new technological paradigm that the social robot represents. The potential has been analyzed on the basis of Dosi’s four dimensions: technological possibilities, appropriability of innovation, cumulativeness of technical advances and properties of the knowledge base. The analysis clarifies that the paradigm has the potential to revolutionize a number of industries as a result of its technological opportunities and worldwide stakeholders, but also faces challenges in the form of technical and ethical difficulties. / Arbetet som presenteras i den här studien grundar sig i det långsiktiga målet att utveckla en social robot som kan vara med och leda samtalssessioner på ett språkcafé. I detalj har studien undersökt om det går att klassificera engagemang hos en samtalsdeltagare utifrån dess ansiktsuttryck och blickriktning – två faktorer som tidigare studier visat sig vara centrala för människans engagemang. För att utföra bedömningen har mjukvaran Openface extraherat nämnda parametrar från en tidigare fältstudie vilka sedan har processats med maskininlärningsmodellen Support Vector Machine. Efter gedigna försök att finna optimala värden på hyperparametrar till modellen lyckades den slutligen predicera engagemang på en tregradig skala med 54,5% accuracy. Vidare har studien också undersökt potentialen för det nya teknologiska paradigmet som den sociala roboten utgör. Potentialen har analyserats med utgångspunkt i Dosis fyra dimensioner: teknologiska möjligheter, möjliga vinster från innovation, kumulativ höjd på teknologiska framsteg och egenskaper i kunskapsbasen. Analysen klargör att paradigmet har förutsättningar att revolutionera ett flertal industrier till följd av dess teknologiska möjligheter och världsomfattande intressenter, men står också inför utmaningar i form av tekniska och etiska svårigheter.
4

Robust recognition of facial expressions on noise degraded facial images

Sheikh, Munaf January 2011 (has links)
<p>We investigate the use of noise degraded facial images in the application of facial expression recognition. In particular, we trained Gabor+SVMclassifiers to recognize facial expressions images with various types of noise. We applied Gaussian noise, Poisson noise, varying levels of salt and pepper noise, and speckle noise to noiseless facial images. Classifiers were trained with images without noise and then tested on the images with noise. Next, the classifiers were trained using images with noise, and then on tested both images that had noise, and images that were noiseless. Finally, classifiers were tested on images while increasing the levels of salt and pepper in the test set. Our results reflected distinct degradation of recognition accuracy. We also discovered that certain types of noise, particularly Gaussian and Poisson noise, boost recognition rates to levels greater than would be achieved by normal, noiseless images. We attribute this effect to the Gaussian envelope component of Gabor filters being sympathetic to Gaussian-like noise, which is similar in variance to that of the Gabor filters. Finally, using linear regression, we mapped a mathematical model to this degradation and used it to suggest how recognition rates would degrade further should more noise be added to the images.</p>
5

Robust recognition of facial expressions on noise degraded facial images

Sheikh, Munaf January 2011 (has links)
<p>We investigate the use of noise degraded facial images in the application of facial expression recognition. In particular, we trained Gabor+SVMclassifiers to recognize facial expressions images with various types of noise. We applied Gaussian noise, Poisson noise, varying levels of salt and pepper noise, and speckle noise to noiseless facial images. Classifiers were trained with images without noise and then tested on the images with noise. Next, the classifiers were trained using images with noise, and then on tested both images that had noise, and images that were noiseless. Finally, classifiers were tested on images while increasing the levels of salt and pepper in the test set. Our results reflected distinct degradation of recognition accuracy. We also discovered that certain types of noise, particularly Gaussian and Poisson noise, boost recognition rates to levels greater than would be achieved by normal, noiseless images. We attribute this effect to the Gaussian envelope component of Gabor filters being sympathetic to Gaussian-like noise, which is similar in variance to that of the Gabor filters. Finally, using linear regression, we mapped a mathematical model to this degradation and used it to suggest how recognition rates would degrade further should more noise be added to the images.</p>
6

Robust recognition of facial expressions on noise degraded facial images

Sheikh, Munaf January 2011 (has links)
Magister Scientiae - MSc / We investigate the use of noise degraded facial images in the application of facial expression recognition. In particular, we trained Gabor+SVMclassifiers to recognize facial expressions images with various types of noise. We applied Gaussian noise, Poisson noise, varying levels of salt and pepper noise, and speckle noise to noiseless facial images. Classifiers were trained with images without noise and then tested on the images with noise. Next, the classifiers were trained using images with noise, and then on tested both images that had noise, and images that were noiseless. Finally, classifiers were tested on images while increasing the levels of salt and pepper in the test set. Our results reflected distinct degradation of recognition accuracy. We also discovered that certain types of noise, particularly Gaussian and Poisson noise, boost recognition rates to levels greater than would be achieved by normal, noiseless images. We attribute this effect to the Gaussian envelope component of Gabor filters being sympathetic to Gaussian-like noise, which is similar in variance to that of the Gabor filters. Finally, using linear regression, we mapped a mathematical model to this degradation and used it to suggest how recognition rates would degrade further should more noise be added to the images. / South Africa

Page generated in 0.1153 seconds