• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prevendo a taxa de juros no Brasil: uma abordagem combinada entre o modelo de correção de erros e o modelo de fatores

Maeda Junior, Tomoharu 14 August 2012 (has links)
Submitted by Tomoharu Maeda Junior (tomoharu.maeda@gmail.com) on 2012-09-11T19:06:07Z No. of bitstreams: 1 DissertacaoMPFE-TMJ.pdf: 2327119 bytes, checksum: e86dad879e97ba7ee62edb2eafde4556 (MD5) / Rejected by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br), reason: Prezado Tomoharu, Foi alterado o título da dissertação, porém não informado em Ata é necessário seu orientador informar. Título anterior: PREVISÃO DA ESTRUTURA A TERMO DE TAXA DE JUROS DO BRASIL UTILIZANDO MODELO DE FATORES COM CORREÇÃO DE ERROS Att. Suzi 3799-7876 on 2012-09-11T19:48:31Z (GMT) / Submitted by Tomoharu Maeda Junior (tomoharu.maeda@gmail.com) on 2012-09-12T13:14:24Z No. of bitstreams: 1 DissertacaoMPFE-TMJ.pdf: 2327119 bytes, checksum: e86dad879e97ba7ee62edb2eafde4556 (MD5) / Approved for entry into archive by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br) on 2012-09-12T13:31:49Z (GMT) No. of bitstreams: 1 DissertacaoMPFE-TMJ.pdf: 2327119 bytes, checksum: e86dad879e97ba7ee62edb2eafde4556 (MD5) / Made available in DSpace on 2012-09-12T13:37:49Z (GMT). No. of bitstreams: 1 DissertacaoMPFE-TMJ.pdf: 2327119 bytes, checksum: e86dad879e97ba7ee62edb2eafde4556 (MD5) Previous issue date: 2012-08-14 / O objetivo do presente trabalho é verificar se o modelo que combina correção de erros e fatores extraídos de grandes conjuntos de dados macroeconômicos produz previsões mais precisas das taxas de juros do Brasil em relação aos modelos VAR, VECM e FAVAR. Para realizar esta análise, foi utilizado o modelo sugerido por Banerjee e Marcellino (2009), o FAVECM, que consiste em agregar o mecanismo de correção de erros ao modelo proposto por Bernanke, Boivin e Eliasz (2005), o FAVAR. A hipótese é que o FAVECM possuiu uma formulação teórica mais geral. Os resultados mostram que para o mercado brasileiro o FAVECM apresentou ganhos significativos de previsão para as taxas mais longas e horizontes de previsão maiores. / The objective of the present work is to examine if the model that combines error correction and factors extracted from large macoeconomic data sets offers a higher forecasting accuracy of the interest rate in Brazil when compared to VAR, VECM and FAVAR. In order to conduct this analysis it was used the econometric methodology introduced by Banerjee and Marcellino (2009), the FAVECM, which allows for the inclusion of error correction terms in the model introduced by Bernanke, Boivin and Eliasz (2005), the FAVAR. The hypothesis is that the FAVECM has several conceptual advantages given it is a nesting (or has a more general) specification. The results show that, for the Brazilian market, the FAVECM presented significant gains in forecasts for longer maturity rates and for longer prevision horizons.

Page generated in 0.173 seconds