• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Asymptotic Symmetries and Dressed States in QED and QCD

Zhou, Saimeng January 2023 (has links)
Infrared divergences arising in theories with massless gauge bosons have been shown to cancel in scattering amplitudes when using dressed states constructed from the Faddeev- Kulish approach to the asymptotic states. It has been established that these states are closely related to asymptotic symmetries of the theory, that is, non-vanishing gauge trans- formations at the asymptotic boundary. In this thesis, we review both of these aspects for QED and non-Abelian gauge theories. We also investigate the expectation value of the non-Abelian field strength tensor using dressed states. We then present a novel con- struction of the dressing operator for non-Abelian gauge theories using Wilson lines. We demonstrate, to order O(g2), that each term of the dressing operator is reproduced in the presented Wilson line approach, along with additional terms that warrant a more thorough understanding. This work extends previous results that pertained to QED and gravity.
2

Asymptotic Symmetries and Faddeev-Kulish states in QED and Gravity

Gaharia, David January 2019 (has links)
When calculating scattering amplitudes in gauge and gravitational theories one encounters infrared (IR) divergences associated with massless fields. These are known to be artifacts of constructing a quantum field theory starting with free fields, and the assumption that in the asymptotic limit (i.e. well before and after a scattering event) the incoming and outgoing states are non-interacting. In 1937, Bloch and Nordsieck provided a technical procedure eliminating the IR divergences in the cross-sections. However, this did not address the source of the problem: A detailed analysis reveals that, in quantum electrodynamics (QED) and in perturbative quantum gravity (PQG), the interactions cannot be ignored even in the asymptotic limit. This is due to the infinite range of the massless force-carrying bosons. By taking these asymptotic interactions into account, one can find a picture changing operator that transforms the free Fock states into asymptotically interacting Faddeev- Kulish (FK) states. These FK states are charged (massive) particles surrounded by a “cloud” of soft photons (gravitons) and will render all scattering processes infrared finite already at an S-matrix level. Recently it has been found that the FK states are closely related to asymptotic symmetries. In the case of QED the FK states are eigenstates of the large gauge transformations – U(1) transformations with a non-vanishing transformation parameter at infinity. For PQG the FK states are eigenstates of the Bondi-Metzner-Sachs (BMS) transformations – the asymptotic symmetry group of an asymptotically flat spacetime. It also appears that the FK states are related the Wilson lines in the Mandelstam quantization scheme. This would allow one to obtain the physical FK states through geometrical or symmetry arguments. We attempt to clarify this relation and present a derivation of the FK states in PQG from the gravitational Wilson line in the eikonal approximation, a result that is novel to this thesis.

Page generated in 0.0354 seconds