• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eignung von objektiven und subjektiven Daten im Fahrsimulator am Beispiel der Aktiven Gefahrenbremsung - eine vergleichende Untersuchung

Jentsch, Martin 09 July 2014 (has links) (PDF)
Fahrerassistenzsysteme (FAS), wie zum Beispiel die „Aktive Gefahrenbremsung“, sollen dazu beitragen, das Fahren sicherer zu machen und die Anzahl an Unfällen und Verunglückten im Straßenverkehr weiter zu senken. Bei der Entwicklung von FAS muss neben der funktionalen Zuverlässigkeit des FAS sichergestellt werden, dass der Fahrer die Assistenzfunktion versteht und fehlerfrei benutzen kann. Zur Bestimmung geeigneter Systemauslegungen kommen in der Entwicklung Probandenversuche zum Einsatz, bei denen die zukünftigen Nutzer das FAS erleben und anschließend beurteilen. In dieser Arbeit wird die Eignung eines statischen Fahrsimulators für die Durchführung von Probandenversuchen zur Bewertung aktiv eingreifender FAS untersucht. Hierzu wurde ein Fahrversuch auf der Teststrecke und im statischen Fahrsimulator konzipiert, mit jeweils ca. 80 Probanden durchgeführt und die Ergebnisse bezüglich der Auswirkung des FAS „Aktive Gefahrenbremsung“ auf ausgewählte objektive und subjektive Kennwerte in der jeweiligen Versuchsumgebung vergleichend gegenübergestellt. Es zeigt sich, dass der statische Fahrsimulator prinzipiell für die Durchführung von Studien zur Bewertung aktiv eingreifender FAS geeignet ist. Als Ergebnis der Arbeit werden Erkenntnisse zur Aussagekraft der betrachteten Kennwerte sowie Empfehlungen zur Versuchsdurchführung im statischen Fahrsimulator gegeben.
2

Eignung von objektiven und subjektiven Daten im Fahrsimulator am Beispiel der Aktiven Gefahrenbremsung - eine vergleichende Untersuchung: Eignung von objektiven und subjektiven Daten im Fahrsimulatoram Beispiel der Aktiven Gefahrenbremsung - eine vergleichende Untersuchung

Jentsch, Martin 04 April 2014 (has links)
Fahrerassistenzsysteme (FAS), wie zum Beispiel die „Aktive Gefahrenbremsung“, sollen dazu beitragen, das Fahren sicherer zu machen und die Anzahl an Unfällen und Verunglückten im Straßenverkehr weiter zu senken. Bei der Entwicklung von FAS muss neben der funktionalen Zuverlässigkeit des FAS sichergestellt werden, dass der Fahrer die Assistenzfunktion versteht und fehlerfrei benutzen kann. Zur Bestimmung geeigneter Systemauslegungen kommen in der Entwicklung Probandenversuche zum Einsatz, bei denen die zukünftigen Nutzer das FAS erleben und anschließend beurteilen. In dieser Arbeit wird die Eignung eines statischen Fahrsimulators für die Durchführung von Probandenversuchen zur Bewertung aktiv eingreifender FAS untersucht. Hierzu wurde ein Fahrversuch auf der Teststrecke und im statischen Fahrsimulator konzipiert, mit jeweils ca. 80 Probanden durchgeführt und die Ergebnisse bezüglich der Auswirkung des FAS „Aktive Gefahrenbremsung“ auf ausgewählte objektive und subjektive Kennwerte in der jeweiligen Versuchsumgebung vergleichend gegenübergestellt. Es zeigt sich, dass der statische Fahrsimulator prinzipiell für die Durchführung von Studien zur Bewertung aktiv eingreifender FAS geeignet ist. Als Ergebnis der Arbeit werden Erkenntnisse zur Aussagekraft der betrachteten Kennwerte sowie Empfehlungen zur Versuchsdurchführung im statischen Fahrsimulator gegeben.
3

Autonomous Driving with Deep Reinforcement Learning

Zhu, Yuhua 17 May 2023 (has links)
The researcher developed an autonomous driving simulation by training an end-to-end policy model using deep reinforcement learning algorithms in the Gym-duckietown virtual environment. The control strategy of the model was designed for the lane-following task. Several reinforcement learning algorithms were implemented and the SAC algorithm was chosen to train a non-end-to-end model with the information provided by the environment such as speed as input values, as well as an end-to-end model with images captured by the agent's front camera as input. In this paper, the researcher compared the advantages and disadvantages of the two models using kinetic parameters in the environment and conducted a series of experiments on the control strategy of the end-to-end model to explore the effects of different environmental parameters or reward functions on the models.:CHAPTER 1 INTRODUCTION 1 1.1 AUTONOMOUS DRIVING OVERVIEW 1 1.2 RESEARCH QUESTIONS AND METHODS 3 1.2.1 Research Questions 3 1.2.2 Research Methods 4 1.3 PAPER STRUCTURE 5 CHAPTER 2 RESEARCH BACKGROUND 7 2.1 RESEARCH STATUS 7 2.2 THEORETICAL BASIS 8 2.2.1 Machine Learning 8 2.2.2 Deep Learning 9 2.2.3 Reinforcement Learning 11 2.2.4 Deep Reinforcement Learning 14 CHAPTER 3 METHOD 15 3.1 SIMULATION PLATFORM 16 3.2 CONTROL TASK 17 3.3 OBSERVATION SPACE 18 3.3.1 Information as Observation (Non-end-to-end) 19 3.3.2 Images as Observation (End-to-end) 20 3.4 ACTION SPACE 22 3.5 ALGORITHM 23 3.5.1 Mathematical Foundations 23 3.5.2 Policy Iteration 25 3.6 POLICY ARCHITECTURE 25 3.6.1 Network Architecture for Non-end-to-end Model 26 3.6.2 Network Architecture for End-to-end Model 28 3.7 REWARD SHAPING 29 3.7.1 Calculation of Speed-based Reward Function 30 3.7.2 Calculation of the reward function based on the position of the agent relative to the right lane 31 CHAPTER 4 TRAINING PROCESS 33 4.1 TRAINING PROCESS OF NON-END-TO-END MODEL 34 4.2 TRAINING PROCESS OF END-TO-END MODEL 35 CHAPTER 5 RESULT 38 CHAPTER 6 TEST AND EVALUATION 41 6.1 EVALUATION OF END-TO-END MODEL 43 6.1.1 Speed Tests in Two Scenarios 43 6.1.2 Lateral Deviation between the Agent and the Right Lane’s Centerline 44 6.1.3 Orientation Deviation between the Agent and the Right Lane’s Centerline 45 6.2 COMPARISON OF THE END-TO-END MODEL TO TWO BASELINES IN SIMULATION 46 6.2.1 Comparison with Non-end-to-end Baseline 47 6.2.2 Comparison with PD Baseline 51 6.3 TEST THE EFFECT OF DIFFERENT WEIGHTS ASSIGNMENTS ON THE END-TO-END MODEL 53 CHAPTER 7 CONCLUSION 57 / Der Forscher entwickelte eine autonome Fahrsimulation, indem er ein End-to-End-Regelungsmodell mit Hilfe von Deep Reinforcement Learning-Algorithmen in der virtuellen Umgebung von Gym-duckietown trainierte. Die Kontrollstrategie des Modells wurde für die Aufgabe des Spurhaltens entwickelt. Es wurden mehrere Verstärkungslernalgorithmen implementiert, und der SAC-Algorithmus wurde ausgewählt, um ein Nicht-End-to-End-Modell mit den von der Umgebung bereitgestellten Informationen wie Geschwindigkeit als Eingabewerte sowie ein End-to-End-Modell mit den von der Frontkamera des Agenten aufgenommenen Bildern als Eingabe zu trainieren. In diesem Beitrag verglich der Forscher die Vor- und Nachteile der beiden Modelle unter Verwendung kinetischer Parameter in der Umgebung und führte eine Reihe von Experimenten zur Kontrollstrategie des End-to-End-Modells durch, um die Auswirkungen verschiedener Umgebungsparameter oder Belohnungsfunktionen auf die Modelle zu untersuchen.:CHAPTER 1 INTRODUCTION 1 1.1 AUTONOMOUS DRIVING OVERVIEW 1 1.2 RESEARCH QUESTIONS AND METHODS 3 1.2.1 Research Questions 3 1.2.2 Research Methods 4 1.3 PAPER STRUCTURE 5 CHAPTER 2 RESEARCH BACKGROUND 7 2.1 RESEARCH STATUS 7 2.2 THEORETICAL BASIS 8 2.2.1 Machine Learning 8 2.2.2 Deep Learning 9 2.2.3 Reinforcement Learning 11 2.2.4 Deep Reinforcement Learning 14 CHAPTER 3 METHOD 15 3.1 SIMULATION PLATFORM 16 3.2 CONTROL TASK 17 3.3 OBSERVATION SPACE 18 3.3.1 Information as Observation (Non-end-to-end) 19 3.3.2 Images as Observation (End-to-end) 20 3.4 ACTION SPACE 22 3.5 ALGORITHM 23 3.5.1 Mathematical Foundations 23 3.5.2 Policy Iteration 25 3.6 POLICY ARCHITECTURE 25 3.6.1 Network Architecture for Non-end-to-end Model 26 3.6.2 Network Architecture for End-to-end Model 28 3.7 REWARD SHAPING 29 3.7.1 Calculation of Speed-based Reward Function 30 3.7.2 Calculation of the reward function based on the position of the agent relative to the right lane 31 CHAPTER 4 TRAINING PROCESS 33 4.1 TRAINING PROCESS OF NON-END-TO-END MODEL 34 4.2 TRAINING PROCESS OF END-TO-END MODEL 35 CHAPTER 5 RESULT 38 CHAPTER 6 TEST AND EVALUATION 41 6.1 EVALUATION OF END-TO-END MODEL 43 6.1.1 Speed Tests in Two Scenarios 43 6.1.2 Lateral Deviation between the Agent and the Right Lane’s Centerline 44 6.1.3 Orientation Deviation between the Agent and the Right Lane’s Centerline 45 6.2 COMPARISON OF THE END-TO-END MODEL TO TWO BASELINES IN SIMULATION 46 6.2.1 Comparison with Non-end-to-end Baseline 47 6.2.2 Comparison with PD Baseline 51 6.3 TEST THE EFFECT OF DIFFERENT WEIGHTS ASSIGNMENTS ON THE END-TO-END MODEL 53 CHAPTER 7 CONCLUSION 57

Page generated in 0.1031 seconds