• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 24
  • 23
  • 20
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 178
  • 178
  • 36
  • 26
  • 22
  • 20
  • 19
  • 18
  • 17
  • 17
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Optimisation of offshore wind farm maintenance

Sinha, Yashwant January 2016 (has links)
The installed capacity of European Offshore Wind Turbines (OWT) is likely to rise from the 2014 value of 7GW to 150GW in 2030. However maintenance of OWT is facing unprecedented challenges and cost 35% of lifetime costs. This will be equivalent to £14billion/year by 2030 if current OWT maintenance schemes are not changed. However the complexities around OWT operation require tools and systems to optimise OWT maintenance. The design of optimal OWT maintenance requires failure analysis of over 10,000 components in OWT for which there is little published work relating to performance and failure. In this work, inspection reports of over 400 wind turbine gearboxes (source: Stork Technical Services) and SCADA data (source: Shetland Aerogenerators Ltd) were studied to identify issues with performance and failures in wind turbines. A modified framework of Failure Mode Effects and Criticality Analysis (i.e. FMECA+) was designed to analyse failures according to the unique requirements of OWT maintenance planners. The FMECA+ framework enables analysis and prediction of failures for varied root causes, and determines their consequences over short and long periods of time. A software tool has been developed around FMECA+ framework that enables prediction of component level failures for varied root causes. The tool currently stores over 800 such instances. The need to develop a FMECA+ based Enterprise Resource Planning tool has been identified and preliminary results obtained from its development have been shown. Such a software package will routinely manage OWT data, predict failures in components, manage resources and plan an optimal maintenance. This will solve some big problems that OWT maintenance planners currently face. This will also support the use of SCADA and condition monitoring data in planning OWT maintenance, something which has been difficult to manage for a long time.
62

Challenges of e-government in developing countries : actor-network analysis of Thailand's smart ID card project

Gunawong, Panom January 2011 (has links)
Empirical studies that reviewed e-government status in developing countries found that e-government research scholars preferred to ask, ‘What is happening?’ rather than ‘Why is it happening?’. This showed little use of theory when it came to e-government study. Although high failure rates can happen anywhere, e-government research seemingly forgets to raise the question of why. To fill this gap, actor-network theory (ANT) was employed by this thesis as an analytical lens to investigate the failure case study of the Smart ID Card project, which was expected to revolutionise Thai public services with a single multi-propose ID card. Critical realism was the philosophical standpoint that framed the basic thinking in this study. It was intended to reflect on the e-government failure phenomenon; query its realities, and find a new set of answers. To achieve the aim of this study, both documentary research and in-depth interviews with relevant key persons were conducted, in order to synthesise the casual relationship and failure mechanisms in the Smart ID Card project. Firstly, the lens of ANT observed the causes of failure that originated from the problematization process, which referred to the role of the focal actor, the Cabinet, and less room for other actors (e.g. main public agencies and citizens) to negotiate in forming the actor-network of the Smart ID Card project. This led to unrealistic, unreachable objectives in the actor-network and opened the door to failure right from the beginning. Secondly, the interessement process, which had great importance in locking actors into position, was incomplete. Thus, the focal actor failed to enact standardisation, laws, regulations and a budget through negligence or lack of concern. This resulted in the failure of both human and non-human actors to enter the actor-network. Thirdly, the uncontrolled chaos in the enrolment process weakened endurance of the actor-network in facing its obstacles, for example, the emergence of a counter-network, which aimed to attack the main actor-network, the transformation of a non-human actor (Smart ID Card) that became a Trojan actor, and the instability of the focal actor. These obstacles brought disassociation among actors in the actor-network and led to the final moment, the betrayal. Fourthly, the betrayal resulted from errors in the earlier moments, which caused betrayal everywhere in the actor-network. All relevant human and non-human actors betrayed the actor-network by not working or supporting it properly in attempting to achieve its goals. Finally, the actor-network of the Smart ID Card project collapsed and could not function to reach its objectives. This meant that the Smart ID Card project did not revolutionise Thai public services as planned. This thesis is one of few theory based-works that contribute to the use of ANT modification as a unique vehicle for investigating failure phenomenon, especially in e-government projects in developing countries. The lessons learned from the story of failure in this study provide new solutions that open the door to successful e-government development.
63

A STUDY ON THE FAILURE ANALYSIS OF THE NEUTRON EMBRITTLED REACTOR PRESSURE VESSEL SUPPORT USING FINITE ELEMENT ANALYSIS

Go-Eun Han (5930657) 16 January 2020 (has links)
<p>One of the major degradation mechanisms in a nuclear power plant structural or mechanical component is the neutron embrittlement of the irradiated steel component. High energy neutrons change the microstructure of the steel, so the steel loses its fracture toughness. This neutron embrittlement increases the risk of the brittle fracture. Meanwhile, the reactor pressure vessel support is exposed in low temperature with high neutron irradiation environment which is an unfavorable condition for the fracture failure. In this study, the failure assessment of a reactor pressure vessel support was conducted using the fitness-for-service failure assessment diagram of API 579-1/ASME FFS-1(2016, API) with quantifying the structural margin under the maximum irradiation and extreme load events. </p> <p>Two interrelated studies were conducted. For the first investigation, the current analytical methods were reviewed to estimate the embrittled properties, such as fracture toughness and the yield strength incorporates the low irradiation temperature. The analytical results indicated that the reactor pressure vessel support may experience substantial fracture toughness decrease during the operation near the lower bound of the fracture toughness. A three-dimensional (3D) solid element finite element model was built for the linear stress analysis. Postulated cracks were located in the maximum stress region to compute the stress intensity and the reference stress ratio. Based on the stress result and the estimated physical properties, the structural margin of the reactor pressure vessel support was analyzed in the failure assessment diagram with respect to the types of the cracks, level of the applied load and the level of the neutron influence. </p> <p>The second study explored the structural stress analysis approaches at hot-spot which was found to be key parameter in failure analysis. Depending on the methods to remove the non-linear peak stress and the stress singularities, the accuracy of the failure assessment result varies. As an alternative proposal to evaluate the structural stress in 3D finite element analysis (FEA), the 3D model was divided into two-dimensional (2D) plane models. Five structural stress determination approaches were applied in 2D FEA for a comparison study, the stress linearization, the single point away approach, the stress extrapolation and the stress equilibrium method and the nodal force method. Reconstructing the structural stress in 3D was carried by the 3x3 stress matrix and compared to the 3D FEA results. The difference in 2D FEA structural stress results were eliminated by the constructing the stress in 3D. </p> <p>This study provides the failure assessment analysis of irradiated steel with prediction of the failure modes and safety margin. Through the failure assessment diagram, we could understand the effects of different levels of irradiation and loadings. Also, this study provides an alternative structural stress determination method, dividing the 3D solid element model into two 2D models, using the finite element analysis. </p><br>
64

Stress and failure analysis of thick-walled conical composite rotors

Hufenbach, W., Gude, M., Zhou, B., Kroll, L. 04 June 2019 (has links)
The high specific strength and stiffness of composite materials, as well as the possibility of creating a load-adapted property profile of them are ideally suited for the design of high-speed lightweight rotors. With respect to a load-adapted reinforcement structure of composite rotors, the rotor geometry has a significant influence on the optimum fibre orientation. In the case of conical rotors—the structural behaviour is strongly influenced by centrifugally induced bending effects in the rotor structure, which cause complex three-dimensional stress states in combination with the ordinary tangential and radial stresses. For analysis of the resulting complex stress states, an analytical method has been developed and verified numerically as well as experimentally. The novel method presented here is the basis for a realistic failure analysis and, in particular, serves as an efficient tool for extensive parameter studies and optimizations within the design process.
65

ASSESSING THE IMPACT OF FIXANT SOLUTIONS APPLIED AT AIRCRAFT ACCIDENT SITES ON COMPOSITE FRACTOGRAPHIC EVIDENCE

Natalie Zimmermann (15322921) 19 April 2023 (has links)
<p>Composite materials used in the aviation industry are known to be more complex than their metallic predecessors. This impacts not only the design and manufacturing of composite structures, but also the failure studies when these structures fail and break (as may be the case in an aircraft accident). Additionally, when under combustion, composite materials introduce potential health hazards. At elevated temperatures, the fibers can be released, presenting an inhalation hazard. Similarly, the matrix decomposition results in a series of potentially toxic byproducts. When encountering composite fires at aircraft accident sites, a series of protocols have been delineated by the corresponding agencies. These include wearing personal protective equipment as well as the application of so-called fixant solutions over the burning composites, with the latter being the focus of this study. The purpose of the fixant solutions is to provide a film of protection that – in essence – holds down small fibers and prevents them from becoming airborne. While the use of fixant solutions is necessary to protect the health of individuals in the vicinity of burnt composites, the potential detrimental impact the application thereof has on fractographic evidence should also be considered. Experts in the field have voiced concerns regarding the use of fixants, outlining that these chemicals may wash evidence away, cover up evidence, or interfere with imaging methods needed during the failure analysis. The purpose of the conducted research, thus, was to compare the relative impact of four commonly used fixant solutions – namely water, wetted water, polyacrylic acid (PAA), as well as a mixture of water and floor wax – on fractographic features of failed carbon fiber/epoxy composite specimens. Specifically, fractographic evidence of two forms of damage – impact and tension – were evaluated. With this goal, the methodology included steps to manufacture the specimens of interest, introduce the two forms of damage, burn the specimens, apply fixants, and perform the microscopic analysis via a scanning electron microscope (SEM). The fractographic evidence prior and after the application of fixant was evaluated qualitatively and quantitatively. The results showed that the evaluated fixants did influence the fracture surfaces imaged, and in certain cased obscured evidence of interest. Additionally, differences between the fixants were ascertained for both forms of damage evaluated. The water treatment was found to perform the best, minimizing the disruption of evidence. Nonetheless, while the study did answer the research questions and the different treatments were compared, additional areas of research and factors that should be considered were identified. </p>
66

Bootstrapping & Separable Monte Carlo Simulation Methods Tailored for Efficient Assessment of Probability of Failure of Dynamic Systems

Jehan, Musarrat January 2014 (has links)
No description available.
67

Effect of Large Holes and Platelet Width on the Open-Hole Tension Performance of Prepreg Platelet Molded Composites

Gabriel Gutierrez (13875776) 07 October 2022 (has links)
<p>Carbon-fiber reinforced polymers (CFRPs) are often used in the aerospace and automotive  industries for their high strength-to-weight ratios and corrosion resistance. A new class of  composites – known as Prepreg Platelet Molded Composites (PPMCs) – offers further  advantageous such as high forming capabilities with modest compromises in strength and stiffness.  One such property of PPMCs that have garnered interest over the years is their apparent  insensitivity to notches. Previous studies have researched the effect of specimen size and platelet  length on its effect on the open-hole performance of PPMCs. Research however has focused on  thinner samples with smaller hole sizes and neglected thicker samples with larger holes.  Additionally, while platelet sizes have been investigated for unnotched samples, platelet width on  notched samples is less clear from the literature. The present thesis offers some investigations to  aid in filling this knowledge gap. </p> <p><br></p> <p>The objective of this work is to study two parameters that could influence the performance of PPMCs under open-hole tension. First, thick (7.6 mm) specimens are subjected to large hole  sizes (up to 19.08 mm) to investigate their behavior in comparison to the smaller sample sizes  previously investigated in the literature. Through-thickness DIC measurements are taken to  investigate strain gradients in these thicker specimens. Second, various platelet widths are tested  to research their influence on notch insensitivity of open-hole tensile PPMC specimens. Lastly, a  finite element based continuum damage mechanics model is implemented to predict macro-level  structural properties using only material properties of the parent prepreg. It is found that large holes  in thick samples increase notch sensitivity compared to other samples of similar diameter-to-width  ratios. Narrower platelets were found to produce higher unnotched strengths, while wider platelets  offered more notch insensitivity. Lastly, the finite element model developed was found to  qualitatively replicate features and failure modes that are exhibited by PPMCs, though strength  predictions became inaccurate at larger specimen sizes. Recommendations are made for future  work on the basis of these findings.   </p>
68

Qualitative Failure Analysis of IoT-enabled Industrial Fire Detection and Prevention System

Rahman, Md M., Abdulhamid, A., Kabir, Sohag 16 December 2023 (has links)
Yes / The Internet of Things (IoT) has improved our lives through various applications such as home automation, smart city monitoring, environmental monitoring, intelligent farming, and a host of others. IoT is increasingly being used for environmental monitoring to prevent fire incidents and other environmental hazards. However, for IoT systems to function effectively in preventing fire incidents, they must operate in a safe, reliable, and dependable manner. The intelligent sensors and devices that constitute the system are prone to different types of failures, which can lead to unsafe or dangerous conditions. Failure of a fire prevention system can pose significant risks to Health, Safety, and the Environment (HSE). To address these concerns, it is essential to understand how component failures can contribute to the overall system failure. This paper adopts Fault Tree Analysis, a widely used framework for failure behaviour analysis in other safety-critical domains, to qualitatively analyse an intelligent fire detection system in an industrial setting. The analysis outlines the ways in which the system can fail and the necessary prevention mechanism to guard against undesired system failure. / The full-text of this article will be released for public view at the end of the publisher embargo on 27 Apr 2025.
69

Strategic valve locations in a water distribution system

Jun, Hwandon 22 June 2005 (has links)
Valves play a critical role in a water distribution system for subsystem isolation and flow or pressure control. Among them, subsystem isolation is required to repair or to rehabilitate a broken component and can be done by closing adjacent valves. To evaluate the role of valves, the concept of "Segment" is necessary. A segment consists of a set of pipes and nodes isolated together by closing adjacent valves when a pipe fails. An efficient algorithm to identify segments in a water distribution system is proposed. In addition, when a segment is isolated, an additional subsystem may be disconnected from water sources by the segment isolation. It is a topological unintended isolation. In addition, a hydraulic failure, in terms of pressure types of failures at demand nodes should be considered. These three account for the failure impact of a pipe. Placing valves efficiently improves the reliability of a water distribution system. However, the valve reliability itself is not 100%. Therefore, valve failure consequence should be explored in determining the locations of valves. For this purpose, three methodologies, namely segment-valve matrix algorithm, decision tree approach and simulation are proposed. Another consideration for placing valves is a strategic valving rule, namely N and (N-1) valving rules. Using a formulation for node reliability in terms of failing valves, the reliability difference between the two valving rules is evaluated. We also employ a mixed N and (N-1) valving rule. Another strategic valving rule, a segment size reducing approach minimizing the number of affected customers is proposed. The developed algorithms are utilized to build software, the Strategic Valve Management Model, to solve practical problems. The methodology is applied to three real water distribution systems. / Ph. D.
70

Torsion of Elliptical Composite Cylindrical Shells

Haynie, Waddy 28 August 2007 (has links)
The response of elliptical composite cylindrical shells under torsion is studied. The torsional condition is developed by rotating one end of the cylinder relative to the other. Prebuckling, buckling, and postbuckling responses are examined, and material failure is considered. Four elliptical cross sections, defined by their aspect ratio, the ratio of minor to major radii, are considered: 1.00 (circular), 0.85, 0.70, and 0.55. Two overall cylinder sizes are studied; a small size with a radius and length for the circular cylinder of 4.28 in. and 12.85 in., respectively, and a large size with radii and lengths five times larger, and thicknesses two times larger than the small cylinders. The radii of the elliptical cylinders are determined so the circumference is the same for all cylinders of a given size. For each elliptical cylinder, two lengths are considered. One length is equal to the length of the circular cylinder, and the other length has a sensitivity of the buckling twist to changes in the length-to-radius ratio the same as the circular cylinder. A quasi-isotropic lamination sequence of a medium-modulus graphite-epoxy composite material is assumed. The STAGS finite element code is used to obtain numerical results. The geometrically-nonlinear static and transient, eigenvalue, and progressive failure analysis options in the code are employed. Generally, the buckling twist and resulting torque decrease with decreasing aspect ratio. Due to material anisotropy, the buckling values are generally smaller for a negative twist than a positive twist. Relative to the buckling torque, cylinders with aspect ratios of 1.00 and 0.85 show little or no increase in capacity in the postbuckling range, while cylinders with aspect ratios of 0.70 and 0.55 show an increase. Postbuckling shapes are characterized by wave-like deformations, with ridges and valleys forming a helical pattern due to the nature of loading. The amplitudes of the deformations are dependent on cross-sectional geometry. Some elliptical cylinders develop wave-like deformations prior to buckling. Instabilities in the postbuckling range result in shape changes and loss of torque capacity. Material failure occurs on ridges and in valleys. Cylinder size and cross-sectional geometry influence the initiation and progression of failure. / Ph. D.

Page generated in 0.0912 seconds