• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 24
  • 23
  • 20
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 37
  • 26
  • 22
  • 20
  • 19
  • 18
  • 17
  • 17
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Adaptation of Model Transformation for Safety Analysis of IoT-based Applications

Abdulhamid, Alhassan, Kabir, Sohag, Ghafir, Ibrahim, Lei, Ci 05 September 2023 (has links)
Yes / The Internet of Things (IoT) paradigm has continued to provide valuable services across various domains. However, guaranteeing the safety assurance of the IoT system is increasingly becoming a concern. While the growing complexity of IoT design has brought additional safety requirements, developing safe systems remains a critical design objective. In earlier studies, a limited number of approaches have been proposed to evaluate the safety requirements of IoT systems through the generation of static safety artefacts based on manual processes. This paper proposes a model-based approach to the safety analysis of the IoT system. The proposed framework explores the expressiveness of UML/SysML graphical modelling languages to develop a dynamic fault tree (DFT) as an analysis artefact of the IoT system. The framework was validated using a hypothetical IoT-enabled Smart Fire Detection and Prevention System (SFDS). The novel framework can capture dynamic failure behaviour, often ignored in most model-based approaches. This effort complements the inherent limitations of existing manual static failure analysis of the IoT systems and, consequently, facilitates a viable safety analysis that increases public assurance in the IoT systems. / The full text of this accepted manuscript will be available at the end of the publisher's embargo: 11th Feb 2025
72

Enhancing safety in IoT systems: A model-based assessment of a smart irrigation system using fault tree analysis

Abdulhamid, Alhassan, Rahman, M.M., Kabir, Sohag, Ghafir, Ibrahim 20 August 2024 (has links)
Yes / The agricultural industry has the potential to undergo a revolutionary transformation with the use of Internet of Things (IoT) technology. Crop monitoring can be improved, waste reduced, and efficiency increased. However, there are risks associated with system failures that can lead to significant losses and food insecurity. Therefore, a proactive approach is necessary to ensure the effective safety assessment of new IoT systems before deployment. It is crucial to identify potential causes of failure and their severity from the conceptual design phase of the IoT system within smart agricultural ecosystems. This will help prevent such risks and ensure the safety of the system. This study examines the failure behaviour of IoT-based Smart Irrigation Systems (SIS) to identify potential causes of failure. This study proposes a comprehensive Model-Based Safety Analysis (MBSA) framework to model the failure behaviour of SIS and generate analysable safety artefacts of the system using System Modelling Language (SysML). The MBSA approach provides meticulousness to the analysis, supports model reuse, and makes the development of a Fault Tree Analysis (FTA) model easier, thereby reducing the inherent limitations of informal system analysis. The FTA model identifies component failures and their propagation, providing a detailed understanding of how individual component failures can lead to the overall failure of the SIS. This study offers valuable insights into the interconnectedness of various component failures by evaluating the SIS failure behaviour through the FTA model. This study generates multiple minimal cut sets, which provide actionable insights into designing dependable IoT-based SIS. This analysis identifies potential weak points in the design and provides a foundation for safety risk mitigation strategies. This study emphasises the significance of a systematic and model-driven approach to improving the dependability of IoT systems in agriculture, ensuring sustainable and safe implementation.
73

Adapting Fourier Analysis for Predicting Earth, Mars and Lunar Orbiting Satellite's Telemetry Behavior

Losik, Len 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / Prognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences, which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.
74

Using Telemetry Science, An Adaptation of Prognostic Algorithms for Predicting Normal Space Vehicle Telemetry Behavior from Space for Earth and Lunar Satellites and Interplanetary Spacecraft

Losik, Len 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Prognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.
75

Reliability of cold-formed steel screwed connections in tilt-and bearing

Van Wyk, Rudolf 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The South African National Standard for the structural use of cold-formed steel (SANS 10162-2) provides capacity prediction models for screwed connections. Screwed connections are designed against shear failure of the screw(s), section tear-out, net section failure and tilt-andbearing failure. Previous studies (Rogers & Hancock, 1997) showed that the capacity is typically determined by the tilt-and-bearing type failure mode. The aim of this document is to report on the reliability of single screwed connections in cold-formed steel against this critical failure mode. Predicted nominal capacities depend on the ultimate tensile strength of the steel, the thickness of the connected plates and the diameter of the screw. Design capacities are obtained by multiplying the nominal capacities by a capacity reduction factor of 0.5, according to SANS 10162-2. Reliability is assessed by means of FORM analyses, taking uncertainty in the prediction model and variability of input parameters into account. Laboratory testing of 222 single screwed connections allowed to statistically describe the model factor, i.e. the ratio of actual tested- over unbiased predicted capacity. For each connection, the steel strength, plate thickness and screw diameter were measured, with the measured values used to predict capacity. This implies that the model factor accounts for uncertainty in the prediction model and experimental setup, while the variability of input parameters is separately accounted for through appropriate statistical modelling. Variability in the input parameters was described using appropriate statistical distributions from expert literature (Holicky, 2009:199; JCSS, 2000). For steel strength, the mean value and standard deviation were obtained from tensile tests, while mean values and standard deviations of the plate thickness and screw diameter were obtained from the above mentioned measurements. The experimental work and numerical analysis resulted in a model factor with a mean just exceeding unity and a small standard deviation. This suggests that the design code under consideration is able to accurately predict the nominal capacity of screwed connections. The FORM analysis resulted in computed reliability indexes significantly higher than the corresponding target values which suggest conservative and reliable design formulations. Die eksperimentele werk en numeriese analise het gelei tot 'n model faktor met 'n gemiddeld hoër as een en 'n klein standaardafwyking. Dit dui daarop aan dat die ontwerp-kode onder oorweging in staat is om die nominale kapasitiet van skroef verbindings akkuraat te voorspel. Die betroubaarheid analise het gelei tot betroubaarheidsindekse aansienlik hoër as die ooreenstemmende teiken waardes wat daarop dui dat die ontwerp formulerings betroubaar en hoogs konserwatief is. / AFRIKAANSE OPSOMMING: Die Suid-Afrikaanse Nasionale Standaard vir die strukturele gebruik van koud gevormde staal (SANS 10162-2) bied voorspellingsmodelle vir die kapasitiet van skroef verbindings. Skroef verbindings word ontwerp teen skroef faling, staal profiel faling, die uitskeer van skroewe en ook faling weens skroef kanteling. Vorige studies (Rogers & Hancock, 1997) het getoon dat die kapasiteit gewoonlik bepaal word deur die skroef-kantel falingsmodus. Die doel van hierdie navorsing is om verslag te doen oor die betroubaarheid van tipiese enkel skroef verbindings in koud gevormde staal strukture teen hierdie kritiese falingsmodus. Voorspelde nominale kapasiteite hang af van die treksterkte van die staal, die dikte van die verbonde profiele en die diameter van die skroef. Volgens die SANS 10162-2 word die ontwerp kapasiteit verkry deur die nominale kapasiteit met 'n kapasiteitsverminderingsfaktor van 0.5 te vermenigvuldig. Betroubaarheid word ontleed deur middel van ʼn eerste orde betroubaarheidsmetode analise, met die in ag neming van onsekerheid in die voorspellingsmodel en wisselvalligheid van die parameters. Laboratoriumtoetse van 222 enkel skroef verbindings het ʼn statistiese beskrywing van die model faktor toegelaat. Die model faktor is bereken as die verhouding tussen die getoetste kapasitiet en die voorspelde kapasitiet. Die staal sterkte, profiel dikte en skroef diameter is gemeet vir elke verbinding met die gemete waardes wat gebruik is om die kapasiteit te voorspel. Dit beteken dat die model faktor slegs onsekerhede in die voorspellingsmodel en van die eksperimentele opstelling in ag neem, terwyl die wisselvalligheid van die parameters afsonderlik in ag geneem word deur toepaslike statistiese modellering. Variasie in die parameters is beskryf met gepaste statistiese verdelings voorgestel deur verskeie literatuur (Holicky, 2009:199; JCSS, 2000). Aangaande die staal sterkte, is die gemiddelde waardes en standaardafwykings verkry deur standaard trek toetse terwyl die gemiddelde waardes en standaardafwykings van die plaat dikte en skroef diameter verkry is deur die bogenoemde metings.
76

Using Telemetry to Measure Equipment Mission Life on the NASA Orion Spacecraft for Increasing Astronaut Safety

Losik, Len 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / The surprise failure of two NASA Space Shuttles and the premature failures of satellite subsystem equipment on NASA satellites are motivating NASA to adopt an engineering discipline that uses telemetry specifically developed for preventing surprise equipment failures. The NASA Orion spacecraft is an Apollo module-like capsule planned to replace the NASA Space Shuttle reusable launch vehicle for getting astronauts to space and return to the earth safely as well as a crew escape vehicle stored at the ISS. To do so, NASA is adopting a non-Markov reliability paradigm for measuring equipment life based on the prognostic and health management program on the Air Force F-35 Joint Strike Fighter. The decision is based on the results from the prognostic analysis completed on the Space Shuttle Challenger and Columbia that identified the information that was present but was ignored for a variety of reasons. The goal of a PHM is to produce equipment that will not fail prematurely. It includes using predictive algorithms to measure equipment usable life. Equipment with transient behavior caused from accelerated of parts will fail prematurely with 100% certainty. For many decades, it was believed that test equipment and software used to in testing and noise from communications equipment were the cause of most transient behavior. With the processing speed of today's processors, transient behavior is caused from at least one part suffering from accelerated aging. Transient behavior is illustrated in equipment telemetry in a prognostic analysis. Telemetry is equipment performance information and equipment performance has been used to increase reliability, but performance is unrelated to equipment remaining usable life and so equipment should be failing prematurely. A PHM requires equipment telemetry for analysis and so analog telemetry will be available from all Orion avionics equipment. Replacing equipment with a measured remaining usable life of less than one year will stop the premature and surprise equipment failures from occurring during future manned and unmanned space missions.
77

Stopping Launch Vehicle Failures Using Telemetry to Measure Equipment Usable Life

Losik, Len 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / Launch vehicle equipment reliability is driven by infant mortality failures, which can be eliminated using a prognostic analysis prior, during and/or after the exhaustive and comprehensive dynamic environmental factory acceptance testing. Measuring and confirming equipment performance is completed to increase equipment reliability by identifying equipment that fails during test for repair/replacement. To move to the 100% reliability domain, equipment dynamic environmental factory testing should be followed by a prognostic analysis to measure equipment usable life and identify the equipment that will fail prematurely. During equipment testing, only equipment performance is measured and equipment performance is unrelated to equipment reliability making testing alone inadequate to produce equipment with 100% reliability. A prognostic analysis converts performance measurements into an invasive usable life measurement by sharing test data used to measure equipment performance. Performance data is converted to usable life data provides a time-to-failure (TTF) in minutes/hours/days/months for equipment that will fail within the first year of use, allowing the production of equipment with 100% reliability.
78

Using Telemetry to Measure Equipment Reliability and Upgrading the Satellite and Launch Vehicle Factory ATP

Losik, Len 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / Satellite and launch vehicles continues to suffer from catastrophic infant mortality failures. NASA now requires satellite suppliers to provide on-orbit satellite delivery and a free satellite and launch vehicle in the event of a catastrophic infant mortality failure. A high infant mortality failure rate demonstrates that the factory acceptance test program alone is inadequate for producing 100% reliability space vehicle equipment. This inadequacy is caused from personnel only measuring equipment performance during ATP and performance is unrelated to reliability. Prognostic technology uses pro-active diagnostics, active reasoning and proprietary algorithms that illustrate deterministic data for prognosticians to identify piece-parts, components and assemblies that will fail within the first year of use allowing this equipment to be repaired or replaced while still on the ground. Prognostic technology prevents equipment failures and so is pro-active. Adding prognostic technology will identify all unreliable equipment prior to shipment to the launch pad producing 100% reliable equipment and will eliminate launch failures, launch pad delays, on-orbit infant mortalities, surprise in-orbit failures. Moving to the 100% reliable equipment extends on-orbit equipment usable life.
79

Adapting Fourier Analysis for Predicting Earth, Mars and Lunar Orbiting Satellite's Telemetry Behavior

Losik, Len 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / Prognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences, which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.
80

Análise inteligente de falhas para apoiar decisões estratégicas em projetos de sistemas críticos. / Intelligent analysis of failure that supports strategic decision-making in critical systems projects.

Oliveira, Adilson de 13 October 2009 (has links)
Este trabalho propõe o uso de Sistemas de Informação e Inteligência Empresarial visando a Análise Inteligente de Falhas para Apoiar Decisões Estratégicas em Projetos de Sistemas Críticos. Tal proposta estabelece uma correlação entre a dinâmica proveniente de recursos e ferramentas de Sistemas de Informação e Inteligência Empresarial, e a necessidade de se obter informações precisas, em intervalos de tempo aceitáveis para agregar valores tangíveis na segurança, confiabilidade, disponibilidade e mantenabilidade de Sistemas Críticos. A proposta aqui apresentada vem ao encontro da necessidade premente de disponibilizar, com maior eficácia, informações precisas para a aferição de indicadores importantes ao Projeto de Sistemas Críticos, e favorecer a implementação de ações mitigadoras de falhas que possam vir a comprometer o funcionamento desses sistemas. De forma a completar e consolidar a proposta em questão desenvolveu-se um ambiente computacional, utilizando-se dos fundamentos teóricos e das melhores práticas de Sistemas de Informação e Inteligência Empresarial, com as especificidades inerentes a Sistemas Críticos. Avaliou-se tal ambiente em um estudo de caso desenvolvido no Sistema Metroviário de São Paulo. Esse estudo de caso contribuiu, no aspecto conceitual, com a realização de ensaios de análises qualitativas e quantitativas de falhas, fornecendo informações relevantes para apoiar possíveis decisões estratégicas no sistema estudado. / This work proposes the use of Information Systems and Business Intelligence aiming an Intelligent Analysis of Failure that supports Strategic Decision Making in Critical Systems Projects. This proposition establishes a correlation between the dynamics of resources and tools from Information Systems and Business Intelligence, and the need to obtain accurate information within an acceptable time interval to add tangible value in security, reliability, availability and maintainability of Critical Systems. The proposition presented here meets the need to provide, more efficiently, accurate information to measure relevant indicators of the projects in Critical Systems, and favor the implementation of failure mitigating actions that could come to compromise the functioning of these systems. In order to complete and consolidate the proposition in question, a computational environment was developed, making use of the theoretical bases and of the best practices of Systems of Information and Business Intelligence, with the peculiarities inherent to Critical Systems. Such environment was evaluated in a case study in the Metrorail Company of São Paulo State, in which qualitative and quantitative analysis of failures were tested, providing relevant information to support possible strategic decisions in the system studied.

Page generated in 0.0623 seconds