• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 3
  • Tagged with
  • 87
  • 87
  • 38
  • 35
  • 29
  • 26
  • 25
  • 20
  • 19
  • 18
  • 16
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Real-time forecasting of dietary habits and user health using Federated Learning with privacy guarantees

Horchidan, Sonia-Florina January 2020 (has links)
Modern health self-monitoring devices and applications, such as Fitbit and MyFitnessPal, empower users to take concrete actions and set fitness and lifestyle goals based on their recorded trends and statistics. Predicting such trends is beneficial in the road of achieving long-time targets, as the individuals can adjust their diets and habits at any point to guarantee success. The design and implementation of such a system, which also respects user privacy, is the main objective of our work.This application is modelled as a time-series forecasting problem. Given the historical data of users, we aim to predict their eating and lifestyle habits in real-time. We apply the federated learning paradigm to our use-case be- cause of the highly-distributed nature of our data and the privacy concerns of such sensitive recorded information. However, federated learning from het- erogeneous sequences of data can be challenging, as even state-of-the-art ma- chine learning techniques for time-series forecasting can encounter difficulties when learning from very irregular data sequences. Specifically, in the pro- posed healthcare scenario, the machine learning algorithms might fail to cater to users with unique dietary patterns.In this work, we implement a two-step streaming clustering mechanism and group clients that exhibit similar eating and fitness behaviours. The con- ducted experiments prove that learning federatively in this context can achieve very high prediction accuracy, as our predictions are no more than 0.025% far from the ground truth value with respect to the range of each feature. Training separate models for each group of users is shown to be beneficial, especially in terms of the training time, but it is highly dependent on the parameters used for the models and the training process. Our experiments conclude that the configuration used for the general federated model cannot be applied to the clusters of data. However, a decrease in prediction error of more than 45% can be achieved, given the parameters are optimized for each case.Lastly, this work tackles the problem of data privacy by applying state-of- the-art differential privacy techniques. Our empirical study shows that noising the gradients sent to the server is unsuitable for small datasets and cancels out the benefits obtained by prior users’ clustering. On the other hand, noising the training data achieves remarkable results, obtaining a differential privacy level corresponding to an epsilon value of 0.1 with an increase in the observed mean absolute error by a factor of only 0.21. / Moderna apparater och applikationer för självövervakning av hälsa, som Fitbit och MyFitnessPal, ger användarna möjlighet att vidta konkreta åtgärder och sätta fitness- och livsstilsmål baserat på deras dokumenterade trender och statistik. Att förutsäga sådana trender är fördelaktigt för att uppnå långtidsmål, eftersom individerna kan anpassa sina dieter och vanor när som helst för att garantera framgång.Utformningen och implementeringen av ett sådant system, som dessutom respekterar användarnas integritet, är huvudmålet för vårt arbete. Denna appli- kation är modellerad som ett tidsserieprognosproblem. Med avseende på an- vändarnas historiska data är målet att förutsäga deras matvanor och livsstilsva- nor i realtid. Vi tillämpar det federerade inlärningsparadigmet på vårt använd- ningsfall på grund av den mycket distribuerade karaktären av vår data och in- tegritetsproblemen för sådan känslig bokförd information. Federerade lärande från heterogena datasekvenser kan emellertid vara utmanande, eftersom även de modernaste maskininlärningstekniker för tidsserieprognoser kan stöta på svårigheter när de lär sig från mycket oregelbundna datasekvenser. Specifikt i det föreslagna sjukvårdsscenariot kan maskininlärningsalgoritmerna misslyc- kas med att förse användare med unika dietmönster.I detta arbete implementerar vi en tvåstegsströmmande klustermekanism och grupperar användare som uppvisar liknande ät- och fitnessbeteenden. De genomförda experimenten visar att federerade lärande i detta sammanhang kan uppnå mycket hög nogrannhet i förutsägelse, eftersom våra förutsägelser in- te är mer än 0,025% ifrån det sanna värdet med avseende på intervallet för varje funktion. Träning av separata modeller för varje grupp användare visar sig vara fördelaktigt, särskilt gällande träningstiden, men det är mycket be- roende av parametrarna som används för modellerna och träningsprocessen. Våra experiment drar slutsatsen att konfigurationen som används för den all- männa federerade modellen inte kan tillämpas på dataklusterna. Dock kan en minskning av förutsägelsefel på mer än 45% uppnås, givet att parametrarna är optimerade för varje fall.Slutligen hanteras problemet med datasekretess genom att tillämpa bästa tillgängliga differentiell integritetsteknik. Vår empiriska studie visar att adde- ra brus till gradienter som skickas till servern är olämpliga för liten data och avbryter fördelarna med tidigare användares kluster. Däremot, genom att ad- dera brus till träningsdata uppnås anmärkningsvärda resultat. En differentierad integritetsnivå motsvarande ett epsilonvärde på 0,1 med en ökning av det ob- serverade genomsnittliga absoluta felet med en faktor på endast 0,21 erhölls.
82

Towards Privacy and Communication Efficiency in Distributed Representation Learning

Sheikh S Azam (12836108) 10 June 2022 (has links)
<p>Over the past decade, distributed representation learning has emerged as a popular alternative to conventional centralized machine learning training. The increasing interest in distributed representation learning, specifically federated learning, can be attributed to its fundamental property that promotes data privacy and communication savings. While conventional ML encourages aggregating data at a central location (e.g., data centers), distributed representation learning advocates keeping data at the source and instead transmitting model parameters across the network. However, since the advent of deep learning, model sizes have become increasingly large often comprising million-billions of parameters, which leads to the problem of communication latency in the learning process. In this thesis, we propose to tackle the problem of communication latency in two different ways: (i) learning private representation of data to enable its sharing, and (ii) reducing the communication latency by minimizing the corresponding long-range communication requirements.</p> <p><br></p> <p>To tackle the former goal, we first start by studying the problem of learning representations that are private yet informative, i.e., providing information about intended ''ally'' targets while hiding sensitive ''adversary'' attributes. We propose Exclusion-Inclusion Generative Adversarial Network (EIGAN), a generalized private representation learning (PRL) architecture that accounts for multiple ally and adversary attributes, unlike existing PRL solutions. We then address the practical constraints of the distributed datasets by developing Distributed EIGAN (D-EIGAN), the first distributed PRL method that learns a private representation at each node without transmitting the source data. We theoretically analyze the behavior of adversaries under the optimal EIGAN and D-EIGAN encoders and the impact of dependencies among ally and adversary tasks on the optimization objective. Our experiments on various datasets demonstrate the advantages of EIGAN in terms of performance, robustness, and scalability. In particular, EIGAN outperforms the previous state-of-the-art by a significant accuracy margin (47% improvement), and D-EIGAN's performance is consistently on par with EIGAN under different network settings.</p> <p><br></p> <p>We next tackle the latter objective - reducing the communication latency - and propose two timescale hybrid federated learning (TT-HF), a semi-decentralized learning architecture that combines the conventional device-to-server communication paradigm for federated learning with device-to-device (D2D) communications for model training. In TT-HF, during each global aggregation interval, devices (i) perform multiple stochastic gradient descent iterations on their individual datasets, and (ii) aperiodically engage in consensus procedure of their model parameters through cooperative, distributed D2D communications within local clusters. With a new general definition of gradient diversity, we formally study the convergence behavior of TT-HF, resulting in new convergence bounds for distributed ML. We leverage our convergence bounds to develop an adaptive control algorithm that tunes the step size, D2D communication rounds, and global aggregation period of TT-HF over time to target a sublinear convergence rate of O(1/t) while minimizing network resource utilization. Our subsequent experiments demonstrate that TT-HF significantly outperforms the current art in federated learning in terms of model accuracy and/or network energy consumption in different scenarios where local device datasets exhibit statistical heterogeneity. Finally, our numerical evaluations demonstrate robustness against outages caused by fading channels, as well favorable performance with non-convex loss functions.</p>
83

Federated Learning for Natural Language Processing using Transformers / Evaluering av Federerad Inlärning tillämpad på Transformers för klassificering av analytikerrapporter

Kjellberg, Gustav January 2022 (has links)
The use of Machine Learning (ML) in business has increased significantly over the past years. Creating high quality and robust models requires a lot of data, which is at times infeasible to obtain. As more people are becoming concerned about their data being misused, data privacy is increasingly strengthened. In 2018, the General Data Protection Regulation (GDPR), was announced within the EU. Models that use either sensitive or personal data to train need to obtain that data in accordance with the regulatory rules, such as GDPR. One other data related issue is that enterprises who wish to collaborate on model building face problems when it requires them to share their private corporate data [36, 38]. In this thesis we will investigate how one might overcome the issue of directly accessing private data when training ML models by employing Federated Learning (FL) [38]. The concept of FL is to allow several silos, i.e. separate parties, to train models with the same objective, using their local data and then with the learned model parameters create a central model. The objective of the central model is to obtain the information learned by the separate models, without ever accessing the raw data itself. This is achieved by averaging the separate models’ weights into the central model. FL thus facilitates opportunities to train a model on large amounts of data from several sources, without the need of having access to the data itself. If one can create a model with this methodology, that is not significantly worse than a model trained on the raw data, then positive effects such as strengthened data privacy, cross-enterprise collaboration and more could be attainable. In this work we have used a financial data set consisting of 25242 equity research reports, provided by Skandinaviska Enskilda Banken (SEB). Each report has a recommendation label, either Buy, Sell or Hold, making this a multi-class classification problem. To evaluate the feasibility of FL we fine-tune the pre-trained Transformer model AlbertForSequenceClassification [37] on the classification task. We create one baseline model using the entire data set and an FL model with different experimental settings, for which the data is distributed both uniformly and non-uniformly. The baseline model is used to benchmark the FL model. Our results indicate that the best FL setting only suffers a small reduction in performance. The baseline model achieves an accuracy of 83.5% compared to 82.8% for the best FL model setting. Further, we find that with an increased number of clients, the performance is worsened. We also found that our FL model was not sensitive to non-uniform data distributions. All in all, we show that FL results in slightly worse generalisation compared to the baseline model, while strongly improving on data privacy, as the central model never accesses the clients’ data. / Företags nyttjande av maskininlärning har de senaste åren ökat signifikant och för att kunna skapa högkvalitativa modeller krävs stora mängder data, vilket kan vara svårt att insamla. Parallellt med detta så ökar också den allmänna förståelsen för hur användandet av data missbrukas, vilket har lätt till ett ökat behov av starkare datasäkerhet. 2018 så trädde General Data Protection Regulation (GDPR) i kraft inom EU, vilken bland annat ställer krav på hur företag skall hantera persondata. Företag med maskininlärningsmodeller som på något sätt använder känslig eller personlig data behöver således ha fått tillgång till denna data i enlighet med de rådande lagar och regler som omfattar datahanteringen. Ytterligare ett datarelaterat problem är då företag önskar att skapa gemensamma maskininlärningsmodeller som skulle kräva att de delar deras bolagsdata [36, 38]. Denna uppsats kommer att undersöka hur Federerad Inlärning [38] kan användas för att skapa maskinlärningsmodeller som överkommer dessa datasäkerhetsrelaterade problem. Federerad Inlärning är en metod för att på ett decentraliserat vis träna maskininlärningsmodeller. Detta omfattar att låta flera aktörer träna en modell var. Varje enskild aktör tränar respektive modell på deras isolerade data och delar sedan endast modellens parametrar till en central modell. På detta vis kan varje enskild modell bidra till den gemensamma modellen utan att den gemensamma modellen någonsin haft tillgång till den faktiska datan. Givet att en modell, skapad med Federerad Inlärning kan uppnå liknande resultat som en modell tränad på rådata, så finns många positiva fördelar så som ökad datasäkerhet och ökade samarbeten mellan företag. Under arbetet har ett dataset, bestående av 25242 finansiella rapporter tillgängliggjort av Skandinaviska Ensilda Banken (SEB) använts. Varje enskild rapport innefattar en rekommendation, antingen Köp, Sälj eller Håll, vilket innebär att vi utför muliklass-klassificering. Med datan tränas den förtränade Transformermodellen AlbertForSequence- Classification [37] på att klassificera rapporterna. En Baseline-modell, vilken har tränats på all rådata och flera Federerade modellkonfigurationer skapades, där bland annat varierande fördelningen av data mellan aktörer från att vara jämnt fördelat till vara ojämnt fördelad. Resultaten visar att den bästa Federerade modellkonfigurationen endast presterar något sämre än Baseline-modellen. Baselinemodellen uppnådde en klassificeringssäkerhet på 83.5% medan den bästa Federerade modellen uppnådde 82.8%. Resultaten visar också att den Federerade modellen inte var känslig mot att variera fördelningen av datamängd mellan aktorerna, samt att med ett ökat antal aktörer så minskar klassificeringssäkerheten. Sammanfattningsvis så visar vi att Federerad Inlärning uppnår nästan lika goda resultat som Baseline-modellen, samtidigt så bidrar metoden till avsevärt bättre datasäkerhet då den centrala modellen aldrig har tillgång till rådata.
84

PREVENTING DATA POISONING ATTACKS IN FEDERATED MACHINE LEARNING BY AN ENCRYPTED VERIFICATION KEY

Mahdee, Jodayree 06 1900 (has links)
Federated learning has gained attention recently for its ability to protect data privacy and distribute computing loads [1]. It overcomes the limitations of traditional machine learning algorithms by allowing computers to train on remote data inputs and build models while keeping participant privacy intact. Traditional machine learning offered a solution by enabling computers to learn patterns and make decisions from data without explicit programming. It opened up new possibilities for automating tasks, recognizing patterns, and making predictions. With the exponential growth of data and advances in computational power, machine learning has become a powerful tool in various domains, driving innovations in fields such as image recognition, natural language processing, autonomous vehicles, and personalized recommendations. traditional machine learning, data is usually transferred to a central server, raising concerns about privacy and security. Centralizing data exposes sensitive information, making it vulnerable to breaches or unauthorized access. Centralized machine learning assumes that all data is available at a central location, which is only sometimes practical or feasible. Some data may be distributed across different locations, owned by different entities, or subject to legal or privacy restrictions. Training a global model in traditional machine learning involves frequent communication between the central server and participating devices. This communication overhead can be substantial, particularly when dealing with large-scale datasets or resource-constrained devices. / Recent studies have uncovered security issues with most of the federated learning models. One common false assumption in the federated learning model is that participants are the attacker and would not use polluted data. This vulnerability enables attackers to train their models using polluted data and then send the polluted updates to the training server for aggregation, potentially poisoning the overall model. In such a setting, it is challenging for an edge server to thoroughly inspect the data used for model training and supervise any edge device. This study evaluates the vulnerabilities present in federated learning and explores various types of attacks that can occur. This paper presents a robust prevention scheme to address these vulnerabilities. The proposed prevention scheme enables federated learning servers to monitor participants actively in real-time and identify infected individuals by introducing an encrypted verification scheme. The paper outlines the protocol design of this prevention scheme and presents experimental results that demonstrate its effectiveness. / Thesis / Doctor of Philosophy (PhD) / federated learning models face significant security challenges and can be vulnerable to attacks. For instance, federated learning models assume participants are not attackers and will not manipulate the data. However, in reality, attackers can compromise the data of remote participants by inserting fake or altering existing data, which can result in polluted training results being sent to the server. For instance, if the sample data is an animal image, attackers can modify it to contaminate the training data. This paper introduces a robust preventive approach to counter data pollution attacks in real-time. It incorporates an encrypted verification scheme into the federated learning model, preventing poisoning attacks without the need for specific attack detection programming. The main contribution of this paper is a mechanism for detection and prevention that allows the training server to supervise real-time training and stop data modifications in each client's storage before and between training rounds. The training server can identify real-time modifications and remove infected remote participants with this scheme.
85

[en] SIGNAL PROCESSING TECHNIQUES FOR ENERGY EFFICIENT DISTRIBUTED LEARNING / [pt] TÉCNICAS DE PROCESSAMENTO DE SINAIS PARA APRENDIZAGEM DISTRIBUÍDA COM EFICIÊNCIA ENERGÉTICA

ALIREZA DANAEE 11 January 2023 (has links)
[pt] As redes da Internet das Coisas (IdC) incluem dispositivos inteligentes que contêm muitos sensores que permitem interagir com o mundo físico, coletando e processando dados de streaming em tempo real. O consumo total de energia e o custo desses sensores afetam o consumo de energia e o custo dos dispositivos IdC. O tipo de sensor determina a precisão da interface analógica e a resolução dos conversores analógico-digital (ADCs). A resolução dos ADCs tem um compromisso entre a precisão de inferência e o consumo de energia, uma vez que o consumo de energia dos ADCs depende do número de bits usados para representar amostras digitais. Nesta tese, apresentamos um esquema de aprendizado distribuído com eficiência energética usando sinais quantizados para redes da IdC. Em particular, desenvolvemos algoritmos de gradiente estocástico com reconhecimento de quantização distribuído (DQA-LMS) e de mínimos quadrados recursivos com reconhecimento de quantização distribuído (DQA-RLS) que podem aprender parâmetros de maneira eficiente em energia usando sinais quantizados com poucos bits, exigindo um baixo custo computacional. Além disso, desenvolvemos uma estratégia de compensação de viés para melhorar ainda mais o desempenho dos algoritmos propostos. Uma análise estatística dos algoritmos propostos juntamente com uma avaliação da complexidade computacional das técnicas propostas e existentes é realizada. Os resultados numéricos avaliam os algoritmos com reconhecimento de quantização distribuída em relação às técnicas existentes para uma tarefa de estimação de parâmetros em que os dispositivos IdC operam em um modo ponto a ponto. Também apresentamos um esquema de aprendizado federativo com eficiência energética usando sinais quantizados para redes de IdC. Desenvolvemos o algoritmo federated averaging LMS (QA-FedAvg-LMS) com reconhecimento de quantização para redes IdC estruturadas por configuração de aprendizado federativo em que os dispositivos IdC trocam suas estimativas com um servidor. Uma estratégia de compensação de viés para QA-FedAvg-LMS é proposta junto com sua análise estatística e a avaliação de desempenho em relação às técnicas existentes com resultados numéricos. / [en] Internet of Things (IoT) networks include smart devices that contain many sensors that allow them to interact with the physical world, collecting and processing streaming data in real time. The total energy-consumption and cost of these sensors affect the energy-consumption and the cost of IoT devices. The type of sensor determines the accuracy of the analog interface and the resolution of the analog-to-digital converters (ADCs). The ADC resolution requirement has a trade-off between sensing performance and energy consumption since the energy consumption of ADCs strongly depends on the number of bits used to represent digital samples. In this thesis, we present an energy-efficient distributed learning framework using coarsely quantized signals for IoT networks. In particular, we develop a distributed quantization-aware least-mean square (DQA-LMS) and a distributed quantization-aware recursive least-squares (DQA-RLS) algorithms that can learn parameters in an energy-efficient fashion using signals quantized with few bits while requiring a low computational cost. Moreover, we develop a bias compensation strategy to further improve the performance of the proposed algorithms. We then carry out a statistical analysis of the proposed algorithms along with a computational complexity evaluation of the proposed and existing techniques. Numerical results assess the distributed quantization-aware algorithms against existing techniques for distributed parameter estimation where IoT devices operate in a peer-to-peer mode. We also introduce an energy-efficient federated learning framework using coarsely quantized signals for IoT networks, where IoT devices exchange their estimates with a server. We then develop the quantization-aware federated averaging LMS (QA-FedAvg-LMS) algorithm to perform parameter estimation at the clients and servers. Furthermore, we devise a bias compensation strategy for QA-FedAvg-LMS, carry out its statistical analysis, and assess its performance against existing techniques with numerical results.
86

Towards causal federated learning : a federated approach to learning representations using causal invariance

Francis, Sreya 10 1900 (has links)
Federated Learning is an emerging privacy-preserving distributed machine learning approach to building a shared model by performing distributed training locally on participating devices (clients) and aggregating the local models into a global one. As this approach prevents data collection and aggregation, it helps in reducing associated privacy risks to a great extent. However, the data samples across all participating clients are usually not independent and identically distributed (non-i.i.d.), and Out of Distribution (OOD) generalization for the learned models can be poor. Besides this challenge, federated learning also remains vulnerable to various attacks on security wherein a few malicious participating entities work towards inserting backdoors, degrading the generated aggregated model as well as inferring the data owned by participating entities. In this work, we propose an approach for learning invariant (causal) features common to all participating clients in a federated learning setup and analyse empirically how it enhances the Out of Distribution (OOD) accuracy as well as the privacy of the final learned model. Although Federated Learning allows for participants to contribute their local data without revealing it, it faces issues in data security and in accurately paying participants for quality data contributions. In this report, we also propose an EOS Blockchain design and workflow to establish data security, a novel validation error based metric upon which we qualify gradient uploads for payment, and implement a small example of our Blockchain Causal Federated Learning model to analyze its performance with respect to robustness, privacy and fairness in incentivization. / L’apprentissage fédéré est une approche émergente d’apprentissage automatique distribué préservant la confidentialité pour créer un modèle partagé en effectuant une formation distribuée localement sur les appareils participants (clients) et en agrégeant les modèles locaux en un modèle global. Comme cette approche empêche la collecte et l’agrégation de données, elle contribue à réduire dans une large mesure les risques associés à la vie privée. Cependant, les échantillons de données de tous les clients participants sont généralement pas indépendante et distribuée de manière identique (non-i.i.d.), et la généralisation hors distribution (OOD) pour les modèles appris peut être médiocre. Outre ce défi, l’apprentissage fédéré reste également vulnérable à diverses attaques contre la sécurité dans lesquelles quelques entités participantes malveillantes s’efforcent d’insérer des portes dérobées, dégradant le modèle agrégé généré ainsi que d’inférer les données détenues par les entités participantes. Dans cet article, nous proposons une approche pour l’apprentissage des caractéristiques invariantes (causales) communes à tous les clients participants dans une configuration d’apprentissage fédérée et analysons empiriquement comment elle améliore la précision hors distribution (OOD) ainsi que la confidentialité du modèle appris final. Bien que l’apprentissage fédéré permette aux participants de contribuer leurs données locales sans les révéler, il se heurte à des problèmes de sécurité des données et de paiement précis des participants pour des contributions de données de qualité. Dans ce rapport, nous proposons également une conception et un flux de travail EOS Blockchain pour établir la sécurité des données, une nouvelle métrique basée sur les erreurs de validation sur laquelle nous qualifions les téléchargements de gradient pour le paiement, et implémentons un petit exemple de notre modèle d’apprentissage fédéré blockchain pour analyser ses performances.
87

DISTRIBUTED MACHINE LEARNING OVER LARGE-SCALE NETWORKS

Frank Lin (16553082) 18 July 2023 (has links)
<p>The swift emergence and wide-ranging utilization of machine learning (ML) across various industries, including healthcare, transportation, and robotics, have underscored the escalating need for efficient, scalable, and privacy-preserving solutions. Recognizing this, we present an integrated examination of three novel frameworks, each addressing different aspects of distributed learning and privacy issues: Two Timescale Hybrid Federated Learning (TT-HF), Delay-Aware Federated Learning (DFL), and Differential Privacy Hierarchical Federated Learning (DP-HFL). TT-HF introduces a semi-decentralized architecture that combines device-to-server and device-to-device (D2D) communications. Devices execute multiple stochastic gradient descent iterations on their datasets and sporadically synchronize model parameters via D2D communications. A unique adaptive control algorithm optimizes step size, D2D communication rounds, and global aggregation period to minimize network resource utilization and achieve a sublinear convergence rate. TT-HF outperforms conventional FL approaches in terms of model accuracy, energy consumption, and resilience against outages. DFL focuses on enhancing distributed ML training efficiency by accounting for communication delays between edge and cloud. It also uses multiple stochastic gradient descent iterations and periodically consolidates model parameters via edge servers. The adaptive control algorithm for DFL mitigates energy consumption and edge-to-cloud latency, resulting in faster global model convergence, reduced resource consumption, and robustness against delays. Lastly, DP-HFL is introduced to combat privacy vulnerabilities in FL. Merging the benefits of FL and Hierarchical Differential Privacy (HDP), DP-HFL significantly reduces the need for differential privacy noise while maintaining model performance, exhibiting an optimal privacy-performance trade-off. Theoretical analysis under both convex and nonconvex loss functions confirms DP-HFL’s effectiveness regarding convergence speed, privacy performance trade-off, and potential performance enhancement with appropriate network configuration. In sum, the study thoroughly explores TT-HF, DFL, and DP-HFL, and their unique solutions to distributed learning challenges such as efficiency, latency, and privacy concerns. These advanced FL frameworks have considerable potential to further enable effective, efficient, and secure distributed learning.</p>

Page generated in 0.11 seconds