• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conceptual Design of a Pilot-Scale Pressurized Coal-Feed System

Schroedter, Taylor L 01 December 2018 (has links)
This thesis discusses the results and insights gained from developing a CFD model of a pilot-scale pressurized dry coal-feed system using the Barracuda CFD software and modeling various design concepts and operating conditions. The feed system was required to transport approximately 0.00378 kg/s (30 lb/hr) of pulverized coal from a vertical hopper to a 2.07 MPa (20.4 atm or 300 psi) reactor with a CO2-to-coal mass flow ratio of 1-2. Two feed system concepts were developed and tested for coal mass flow, CO2-to-coal mass ratio, steadiness, and uniformity. Piping system components also were evaluated for pressure drop and coal roping.With the first system concept, Barracuda software model parameters were explored to observe their effect on gas and particle flow. A mesh sensitivity study revealed there exists too fine of a mesh for dual-phase flow with Barracuda due to the particle initialization process. A relatively coarse mesh was found to be acceptable since the results did not change with increasing mesh refinement. Barracuda sub-model parameters that control particle interaction were investigated. Other than the close pack volume fraction, coal flow results were insensitive to changes in these parameters. Default Barracuda parameters were used for design simulations.The gravity-fed system (first concept) relied on gravity to transfer coal from a hopper into the CO2 carrier gas. This design was unable to deliver the required coal mass flow rate due to the cohesion and packing of the particles being greater than the gravity forces acting on the particles. The fluidized bed (second concept) relied on CO2 flow injected at the bottom of the hopper to fluidize the particles and transport them through a horizontal exit pipe. Additional CO2 was added post-hopper to dilute the flow and increase the velocity to minimize particle layout. This concept was shown to decouple the fluidized particle flow and dilution CO2 flow, providing significant design and operating flexibility. A non-uniform mesh was implemented to maintain a high mesh refinement in the 0.635-cm (¼-in) diameter transport pipe with less refinement in the hopper/bed region. The two main hopper diameters evaluated measured 5.08-cm (2-in) and 15.24-cm (6-in). Successful designs were achieved for each with appropriate coal mass flow rates and CO2-to-coal ratios. The particle flow was sufficiently steady for use with a coal burner.A piping system study was performed to test pneumatic transport and the effects of pipe length and bend radius. For a 1-to-1 gas-to-particle mass flow, particle layout occurred after 30 cm of travel. Particle roping occurred to various extents depending on the pipe bend radius. Bend radii of 0.318, 60.96, and 182.88 centimeters were simulated. Roping increased with bend radius and high pressure. Greater gas flow rates increased particle flow steadiness and uniformity. A simple methodology was identified to estimate the pressure drop for different piping system configurations based on the piping components simulated.
2

Microstrip Solutions for Innovative Microwave Feed Systems / Microstrip Solutions for Innovative Microwave Feed Systems

Petersson, Magnus January 2001 (has links)
This report is introduced with a presentation of fundamental electromagnetic theories, which have helped a lot in the achievement of methods for calculation and design of microstrip transmission lines and circulators. The used software for the work is also based on these theories. General considerations when designing microstrip solutions, such as different types of transmission lines and circulators, are then presented. Especially the design steps for microstrip lines, which have been used in this project, are described. Discontinuities, like bends of microstrip lines, are treated and simulated. There are also sections about power handling capability of microstrip transmission lines and different substrate materials. In the result part there are computed and simulated dimensions of the microstrip transmission lines used in the prototype system. Simulations of conceivable loads in the cavity illustrate quantitatively the reflection coefficient. Even practical measurements are made in a network analyzer and are presentedin this part. Suitable materials and dimensions for the final microwave feed transmission line system for high powers are then presented. Since circulators are included in the system a basic introduction to the design of these in stripline and microstrip techniques is also made. At last conclusions, examinations of the designed system and comparisons to the today’s systems are made.
3

Microstrip Solutions for Innovative Microwave Feed Systems / Microstrip Solutions for Innovative Microwave Feed Systems

Petersson, Magnus January 2001 (has links)
<p>This report is introduced with a presentation of fundamental electromagnetic theories, which have helped a lot in the achievement of methods for calculation and design of microstrip transmission lines and circulators. The used software for the work is also based on these theories. </p><p>General considerations when designing microstrip solutions, such as different types of transmission lines and circulators, are then presented. Especially the design steps for microstrip lines, which have been used in this project, are described. Discontinuities, like bends of microstrip lines, are treated and simulated. There are also sections about power handling capability of microstrip transmission lines and different substrate materials. </p><p>In the result part there are computed and simulated dimensions of the microstrip transmission lines used in the prototype system. Simulations of conceivable loads in the cavity illustrate quantitatively the reflection coefficient. Even practical measurements are made in a network analyzer and are presentedin this part. </p><p>Suitable materials and dimensions for the final microwave feed transmission line system for high powers are then presented. Since circulators are included in the system a basic introduction to the design of these in stripline and microstrip techniques is also made. </p><p>At last conclusions, examinations of the designed system and comparisons to the today’s systems are made.</p>
4

Design of a State-Of-The-Art Test Facility for Rocket Engines

Meghavath, Akash Raja January 2022 (has links)
The development of innovative propulsion systems requires testing in suitable facilities that reveal the efficacy of design models and allow for design refinement. The qualification process starts from ground tests and ends in vacuum chambers. The aim of this project is to design a versatile space propulsion facility capable of hosting different rocket engine architectures and providing an adequate supply line for different types of oxidizers and fuels in gaseous form. Identifying the key and critical components and implementing such components for the development of the facility and study the state of the art on safety standards and good practices for rocket engine testing. The test bed should be designed to withstand the structural stresses generated by the engine during static tests, while the supply line system should provide the mass flow required by the engine to deliver the design thrust (maximum thrust of 5kN). In this project, different types of rocket engines and their testing, fuel and oxidizers feed supply, risks involved and safety precautions in working of rocket test facilities are studied. A list of components for the development of such a rocket test facility and design of a logical layout plan consisting of various critical components for the propellant and oxidizer feed system is carried out. A total budget for the rocket test facility by evaluating the costs of various high quality and reliable components involved is produced. By accommodating different rocket architectures to withstand a maximum load of 5kN, an efficient design of the rocket test bed was realized and a static structural analysis of the same was performed that suffice for the objectives of the project.
5

Preliminary Design of a 30 kN Methane-Oxygen-powered Electric-Pump-fed Liquid Rocket Propulsion System

Das, Vikramjeet January 2023 (has links)
The design of a liquid rocket propulsion system, unlike that of a standalone system, is intertwined with the overall development of a number of associated systems and is influenced by a multitude of conditions and considerations: from the requirements needed to accomplish the mission to the rationalizations involved behind the development of each rocket system and/or component. In my thesis, the preliminary design of a “new generation” 30 kN rocket engine driven by an electric pump feed system and running on liquid methane and liquid oxygen is performed. The propulsion system would be employed on a hypothetical small-lift orbital-class twin-stage rocket to deliver a light payload of about 200 kg into a circular 500 km LEO. Such topics as the selection of bipropellant combinations, the feasibility of electric pump feed systems, design methodologies for thrust chambers, for nozzles in particular, management of the high thermal energy and the selection of compatible wall materials, as well as the design of an injector have been looked comprehensively into. It is realized that methalox is indeed better than both hydrolox (with regard to density impulse) and kerolox (in terms of specific impulse). Besides, a suite of attractive characteristics makes the bipropellant a combination of choice to power rockets of the future. Yet more notably, an electric-pump-fed engine cycle is, under the right circumstances of engine operation, established to outperform both the pressure feed system and the turbopump feed system. With constant advancement in battery technologies, improvement of both power density and energy density to achieve much higher performance is but a matter of time. The adoption of a propulsion system such as ours for a mission objective as outlined above, therefore, is not just viable but unquestionably realistic. Two thrust chamber versions—a sea-level variant for the booster stage and a vacuum-optimized variant for the upper stage—are developed for our rocket. And both the nozzles employ a TOP “thrust optimised parabolic” contour; also, the booster stage comprises a cluster of 9 engines in a parallel burn arrangement. Concerning thermal management, the entirety of the booster-stage thrust chamber implements regenerative cooling (using Inconel 625), whereas the aft of the upper-stage nozzle section implements radiative cooling (with Niobium C-103). Further, the injector faceplate (also of Inconel 625) comprises two concentric patterns of unlike impingement doublet sets: with 80 pairs on the outer ring and 40 pairs on the inner ring. With rational assumptions, our hypothetical launch vehicle is deemed to have a mass of roughly 17200 kg (200 kg of which is the payload) and a delta-v of approximately 9600 m/s—quite within the desirable range of specifications for small-lift orbital-class twin-stage rockets of today.
6

Manipulation and Automation of FBJ Short-Axis Fasteners

Wood, Shane Forrest 01 March 2018 (has links)
Legislative and market pressures are pushing automakers to achieve new fuel economy requirements in the coming years. To help achieve these goals automakers are reducing the overall weight of the vehicle by increasing the use of high-strength aluminum and advanced high-strength steels, and with this increased use comes the desire to quickly, and securely, join these materials within the vehicle. Friction bit joining is a process that lends itself well to joining these materials. This process uses consumable fasteners that need to be used in an automated production line. The geometry of these fasteners causes two main problems: the bits have a short longitudinal axis, which makes them difficult to orient, and the welding platform may be used at different angles; requiring a robust reloading system that is indifferent to its orientation.Our research explored ways that these short axis FBJ fasteners could be handled and transported using various automated methods. We tested the use of small mechanical carriages and magnetic tracks to test their viability for transporting FBJ fasteners. The two different types of fasteners that were used in the project are described. Blow feed tubes ended up being a reliable method of transportation given that the fastener has suitable geometry. The superior bit and feed system design were bench tested using a manually controlled feed system. The system was tested in various orientations to test the robustness of the system since the system was designed to be part of the end effector on a production line robot. The testing revealed that the feed tube is a reliable method of bit transportation and mechanical jaws are a suitable solution for FBJ fastener manipulation. These jaws have several key design features that dramatically increase their effectiveness. Suggestions for future work would be an optimized feed tube cross section, improved material properties in the bit jaw, and more air flow at a higher pressure through the feed tube.
7

Návrh CNC frézky pro modelářské dílny / Design of CNC milling machines for modeling workshops

Kovács, Zdeněk January 2018 (has links)
This diploma thesis deals with the design of a CNC milling machine for the puspose of modeling workshop. In the first part is carried out the search in the field of small CNC milling machines for better familiarization with this issue. The information obtained in the first part of the thesis is used for determination the parameters of the designed machine. The last part deals with the design and realization in the form of a 3D model.
8

Investigation of Jamming Phenomenon in a DRI Furnace Pellet Feed System using the Discrete Element Method and Computational Fluid Dynamics

John Gregory Rosser (15448535) 11 May 2023 (has links)
<p>  </p> <p>Direct reduction ironmaking has gained popularity as a low carbon alternative to the typical blast furnace ironmaking route. A popular method of producing direct reduced iron is through the reduction of iron ore pellets in a reduction shaft furnace. Critical to this process is the use of a reliable continuous pellet feed system to provide a steady flow of pellets to the furnace. Therefore, any disruption in pellet flow can have a significant negative impact on the production rate of iron. </p> <p><br></p> <p>An iron ore pellet feed system for a direct reduction ironmaking furnace is jamming during winter operation. The pellets are jamming in a hopper at the top of the feed system above the furnace, and a hot gas, that seals off the furnace flue gas, flows counter to the pellets. A computational model of the feed system is built utilizing the discrete element method and computational fluid dynamics, using Siemen’s commercial multiphysics software Star-CCM+, to study the conditions that cause the jam to occur. The study is divided into six parts: pellet bulk flow calibration, computational cost reduction, modeling of the baseline operation, modeling the effect of moisture, development of a thermal model, and investigation of the minimal amount of icy and wet material to jam the system. The findings show that the location of jamming during operation matches the area in the simulation where it is most likely to occur, and that moisture alone is unlikely to result in jamming. Results indicate that the system will jam when charged with a minimum of 15% icy pellets, and when charged with 10% icy together with 5% wet pellets. Experimental work is recommended to validate the findings and to calibrate the simulations accordingly.</p>
9

Rekonstrukce elektrické části vytloukacího roštu / Reconstruction of discharging shakeout machine electric installation

Bednář, Vojtěch January 2016 (has links)
This Diploma work is concerned with the design of project documentation for discharging shakeout machine electric installation. This work continues in the Semestral project 2 in which the background of a new machine was made. Then, this work deals with the replacement of a switch room with required devices including the design of a new connecting cables and power streams. In the first part, the work deals with the control part of the device and the design of control and signal cables including the product documentation of the device. In the second part, the work deals with the proposal of building electro installation in which a new lighting and its use is described. The last part focuses on the coordination during the realization of a suggested device. In this part, all problems coming from the particular working procedures including a proposal of possible solutions are described. According to the project documentation and following realization, the documentation of final concept reflecting the real status of the device is described.

Page generated in 0.0532 seconds