• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 66
  • 24
  • 6
  • 4
  • Tagged with
  • 255
  • 174
  • 143
  • 140
  • 117
  • 71
  • 61
  • 61
  • 43
  • 39
  • 27
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Regionale Erosionsmodellierung unter Verwendung des Konzepts der Erosion-response-Units (ERU) am Beispiel zweier Flusseinzugsgebiete im südlichen Afrika

Märker, Michael. Unknown Date (has links)
Universiẗat, Diss., 2001--Jena.
72

Die Anwendung von flugzeuggetragenen Laserscannerdaten zur Ansprache dreidimensionaler Strukturelemente von Waldbeständen eine Pilotstudie an ausgewählten Beständen des Hochschwarzwaldes und der Oberrheinebene /

Friedlaender, Hans. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Freiburg (Breisgau).
73

Zusammenhang zwischen Vegetation und Relief in alpinen Einzugsgebieten des Wallis (Schweiz) ein multiskaliger GIS- und Fernerkundungsansatz /

Hörsch, Bianca. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Bonn.
74

Fernerkundungs- und GIS-Analyse der Impaktstrukturen Strangways (N.T.) und Shoemaker (W.A,), Australien

Zumsprekel, Heiko. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Münster (Westfalen).
75

Extrahierung hydrologisch relevanter Parameter aus hochaufgelösten polarimetrischen L-Band sowie interferometrischen X-Band SAR-Daten

Thiel, Christian. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Jena.
76

Methoden zur Detektion von Betriebsstörungen an unterirdischen Pipelinesystemen verschiedener Transportfraktionen mit Hilfe der Fernerkundung

Brüggemann, Helge. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
77

Beitrag zur skalenabhängigen Erfassung teilschlagspezifischer Pflanzenschäden mit Methoden der Fernerkundung und Geoinformation

Voß, Kerstin. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Bonn.
78

Energiebilanzmodellierung zur Ableitung der Evapotranspiration – Beispielregion Khorezm / Optimization of energy balance modelling in order to determine evapotranspiration by developing a physical based soil heat flux approach on the example of Khorezm region in Uzbekistan

Knöfel, Patrick January 2018 (has links) (PDF)
Zum Verständnis der komplexen Wechselwirkungen innerhalb des Klimasystems der Erde sind Kenntnisse über den hydrologischen Zyklus und den Energiekreislauf essentiell. Eine besondere Rolle obliegt hierbei der Evapotranspiration (ET), da sie eine wesentliche Teilkomponente beider oben erwähnter Kreisläufe ist. Die exakte Quantifizierung der regionalen, tatsächlichen Evapotranspiration innerhalb der Wasser- und Energiekreisläufe der Erdoberfläche auf unterschiedlichen zeitlichen und räumlichen Skalen ist für hydrologische, klimatologische und agronomische Fragestellungen von großer Bedeutung. Dabei ist eine realistische Abschätzung der regionalen tatsächlichen Evapotranspiration die wichtigste Herausforderung der hydrologischen Modellierung. Besonders die unterschiedlichen räumlichen und zeitlichen Auflösungen von Satelliteninformationen machen die Fernerkundung sowohl für globale als auch regionale hydrologischen Fragestellungen interessant. Zusätzlich zur Notwendigkeit des Prozessverständnisses des Wasserkreislaufs auf globaler Ebene kommt dessen regionale Bedeutung für die Landwirtschaft, insbesondere in Bewässerungssystemen arider Regionen. In ariden Klimazonen übersteigt die Menge der Verdunstung oft bei weitem die Niederschlagsmengen. Aufgrund der geringen Niederschlagsmenge muss in ariden agrarischen Regionen das zum Pflanzenwachstum benötigte Wasser mit Hilfe künstlicher Bewässerung aufgebracht werden. Der jeweilige lokale Bewässerungsbedarf hängt von der Feldfrucht und deren Wachstumsphase, den Klimabedingungen, den Bodeneigenschaften und der Ausdehnung der Wurzelzone ab. Die Evapotranspiration ist als Komponente der regionalen Wasserbilanz eine wichtige Steuerungsgröße und Effizienzindikator für das lokale Bewässerungsmanagement. Die Bewässe-rungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkom-men. Dies wird als einer der Hauptgründe für die weltweit steigende Wasserknappheit identifiziert. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den OECD Staaten im Mittel bei etwa 44 %, in den Staaten Mittelasiens bei über 90 %. Bei der Erstellung der vorliegenden Arbeit kam die Methode der residualen Bestimmung der Energiebilanz zum Einsatz. Eines der weltweit am häufigsten eingesetzten und vali-dierten fernerkundlichen Residualmodelle zur ET Ableitung ist das SEBAL-Modell (Surface Energy Balance Algorithm for Land, mit über 40 veröffentlichten Studien. SEBAL eignet sich zur Quantifizierung der Verdunstung großflächiger Gebiete und wurde bisher über-wiegend in der Bewässerungslandwirtschaft eingesetzt. Aus diesen Gründen wurde es für die Bearbeitung der Fragestellungen in dieser Arbeit ausgewählt. SEBAL verwendet physikalische und empirische Beziehungen zur Berechnung der Energiebilanzkomponenten basierend auf Fernerkundungsdaten, bei gleichzeitig minimalem Einsatz bodengestützter Daten. Als Eingangsdaten werden u.a. Informationen über Strahlung, Bodenoberflächentemperatur, NDVI, LAI und Albedo verwendet. Zusätzlich zu SEBAL wurden einige Komponenten der SEBAL Weiterentwicklung METRIC (Mapping Evapotranspiration with Internalized Calibration) verwendet, um die Modellierung der ET vorzunehmen. METRIC überwindet einige Limitierungen des SEBAL Verfahrens und kann beispielsweise auch in stärker reliefierten Regionen angewendet werden. Außerdem ermöglicht die Integration einer gebietsspezifischen Referenz-ET sowie einer Landnutzungsklassifikation eine bessere regionale Anpassung des Residualverfahrens. Unter der Annahme der Bedingungen zum Zeitpunkt der Fernerkundungsaufnahme ergibt sich die Energiebilanz an der Erdoberfläche RN = LvE + H + G. Demnach teilt sich die verfügbare Strahlungsenergie RN in die Komponenten latenter Wärme (LVE), fühlbarer Wärme (H) und Bodenwärme (G) auf. Durch Umstellen der Gleichung kann auf die latente Wärme geschlossen werden. Das wesentliche Ziel der vorliegenden Arbeit ist die Optimierung, Erweiterung und Validierung des ausgewählten SEBAL Verfahrens zur regionalen Modellierung der Energiebilanzkomponenten und der daraus abgeleiteten tatsächlichen Evapotranspiration. Die validierten Modellergebnisse der Gebietsverdunstung der Jahre 2009-2011 sollen anschließend als Grundlage dienen, das Gesamtverständnis der regionalen Prozesse des Wasserkreislaufs zu verbessern. Die Arbeit basiert auf der Datengrundlage von MODIS Daten mit 1 km räumlicher Auflösung. Während die Komponenten verfügbare Strahlungsenergie und fühlbarer Wärmestrom physikalisch basiert ermittelt werden, beruht die Berechnung des Bodenwärmestroms ausschließlich auf empirischen Abschätzungen. Ein großer Nachteil des empirischen Ansatzes ist die Vernachlässigung des zeitlichen Versatzes zwischen Strahlungsbilanz und Bodenwärmestrom in Abhängigkeit der aktuellen Bodenfeuchtesituation. Ein besonderer Schwerpunkt der vorliegenden Arbeit liegt auf der Bewertung und Verbesserung der Modellgüte des Bodenwärmestroms durch Verwendung eines neuen Ansatzes zur Integration von Bodenfeuchteinformationen. Daher wird in der Arbeit ein physikalischer Ansatz entwickelt der auf dem Ansatz der periodischen Temperaturveränderung basiert. Hierbei wurde neben dem ENVISAT ASAR SSM Produkt der TU Wien das operationelle Oberflächenbodenfeuchteprodukt ASCAT SSM als Fernerkundungseingangsdaten ausgewählt. Die mit SEBAL modellierten Energiebilanzkomponenten werden durch eine intensive Validierung mit bodengestützten Messungen bewertet, die Messungen stammen von Bodensensoren und Daten einer Eddy-Kovarianz-Station aus den Jahren 2009 bis 2011. Die Region Khorezm gilt als charakteristisch für die wasserbezogene Problematik der Bewässerungslandwirtschaft Mittelasiens und wurde als Untersuchungsgebiet für diese Arbeit ausgewählt. Die wesentlichen Probleme dieser Region entstehen durch die nach wie vor nicht nachhaltige Land- und Wassernutzung, das marode Bewässerungsnetz mit einer Verlustrate von bis zu 40 % und der Bodenversalzung aufgrund hoher Grundwasserspiegel. Im Untersuchungsgebiet wurden in den Jahren 2010 und 2011 umfangreiche Feldarbeiten zur Erhebung lokaler bodengestützter Informationen durchgeführt. Bei der Evaluierung der modellierten Einzelkomponenten ergab sich für die Strahlungsbi-lanz eine hohe Modellgüte (R² > 0,9; rRMSE < 0,2 und NSE > 0,5). Diese Komponente bildet die Grundlage bei der Bezifferung der für die Prozesse an der Erdoberfläche zur Verfügung stehenden Energie. Für die fühlbaren Wärmeströme wurden ebenfalls gute Ergebnisse erzielt, mit NSE von 0,31 und rRMSE von ca. 0,21. Für die residual bestimmte Größe der latenten Wärmeströmung konnte eine insgesamt gute Modellgüte festgestellt werden (R² > 0,6; rRMSE < 0,2 und NSE > 0,5). Dementsprechend gut wurde die tägliche Evapotranspiration modelliert. Hier ergab sich, nach der Interpolation täglicher Werte, eine insgesamt ausreichend gute Modellgüte (R² > 0,5; rRMSE < 0,2 und NSE > 0,4). Dies bestätigt die Ergebnisse vieler Energiebilanzstudien, die lediglich den für die Ableitung der Evapotranspiration maßgebenden Wärmestrom untersuchten. Die Modellergebnisse für den Bodenwärmestrom konnten durch die Entwicklung und Verwendung des neu entwickelten physikalischen Ansatzes von NSE < 0 und rRMSE von ca. 0,57 auf NSE von 0,19 und rRMSE von 0,35 verbessert werden. Dies führt zu einer insgesamt positiven Einschätzung des Verbesserungspotenzials des neu entwickelten Bodenwärmestromansatzes bei der Berechnung der Energiebilanz mit Hilfe von Fernerkundung. / The understanding of the hydrological and the energy cycles are essential in order to describe the complex interactions within the climate system of the earth. Being recognized as an important component of both, the water and the energy cycle, reliable estimation of actual evapotranspiration and its spatial distribution is one outstanding challenge in this context. Detailed knowledge of land surface fluxes, especially latent and sensible heat components, is important for monitoring the climate and land surface, and for agriculture applications such as irrigation scheduling and water management. The use of remote sensing data to determine actual evapotranspiration (ET) is particularly suitable to provide area based indicators for the evaluation of the efficiency and productivity of irrigation systems as well as sustainability studies. Accurate estimation of evapotranspiration plays an important role in quantification of the water balance at watershed, basin, and regional scale for better planning and managing water resources. For instance, in irrigation systems of arid regions, artificial locations of evapotranspiration have been created. An in-depth process understanding is of paramount importance, as irrigated agriculture consumes about 70 % of the available freshwater resources worldwide, with a significant but unsatisfyingly quantified impact on the water cycle, especially on regional scale. Moreover, an exact quantification of ET inside these artificial ecosystems enables assessments of crop water consumptions and hence about water use efficiency. The withdrawal of water for agricultural use in the countries of Central Asia is more than 90 %. For this thesis the residual methods of energy budget are of interest. One of the most common models dealing with energy budget residual is the Surface Energy Balance Algorithm for Land (SEBAL). SEBAL uses physical and empirical relationships to calculate the energy partitioning with minimum of ground data and atmospheric variables are estimated from remote sensing data. The determination of wet and dry surfaces is necessary to extract threshold values. SEBAL requires remote sensing input data like radiation, surface temperature, NDVI, and albedo. For this thesis an algorithm was developed based on SEBAL, its adaptations METRIC (Mapping Evapotranspiration with Internalized Calibration) and some regional adjustments. METRIC introduces the leaf area index (LAI) and land use classification data to determine the dry and hot surfaces as well as the input of additional meteorological data in order to improve the results of the model. Estimation of latent heat flux (LvE, corresponding to evapotranspiration) with SEBAL is based on assessing the energy balance through several surface properties such as albedo, LAI, NDVI, LST etc. Considering instantaneous condition, the energy balance is written as RN = LvE + H + G. Net radiation energy (RN) is available as the sum of the atmospheric convective fluxes sensible heat flux (H), latent heat flux (LvE) and the soil heat flux (G). The main objective of this thesis is to optimize, improve, and evaluate the existing remote sensing based algorithms for the estimation of actual evapotranspiration. For this purpose the seasonal actual ET was calculated using a partly modified SEBAL. SEBAL was implemented based on MODIS time series to solve the energy balance equation. The applied model has proven practicable for this area and is accepted to fulfil the scientific demands. The SEBAL algorithm is tested and set up for the use of 1km MODIS products. Land surface temperature (LST), emissivity, albedo, Normalized Differenced Vegetation Index (NDVI), and leaf area index (LAI) were combined for modelling the actual ET. Land use classification results were aggregated to 1km MODIS scale. Furthermore, the surface soil moisture products ASCAT SSM and ASAR SSM will be used as input data for the model. In addition to remote sensing data meteorological and ground truth data are used in this study. Meteorological data are wind speed, air temperature, relative humidity, and net radiation. The data is required at time of satellite overpass (about 12 p.m.). RN depends on incoming shortwave radiation, incoming and outgoing longwave radiant fluxes, albedo, emissivity and surface temperature. H is mostly calculated using the aerodynamic resistance between the surface and the reference height in the lower atmosphere (commonly 2 m) above surface. G is usually estimated using an empirical equation. This thesis introduces a modified equation to estimate G using an adjusted form of the thermal conduction equation. This method uses microwave soil moisture products (ASAR-SSM and ASCAT-SSM) as additional input information. The SEBAL modelled energy balance components were intensively validated by field measurements with an eddy covariance system and soil sensors in 2009, 2010, and 2011. The thesis is primarily concerned with the irrigation farming of cotton ecosystems in Central Asia, in particular with the situation within Khorezm Oblast in Uzbekistan. Regional problems of Khorezm are high groundwater levels, soil salinity, and non-sustainable use of land and water. Amongst others, the determination of ground truth data driven by the above mentioned objectives are part of two extensive field campaigns in 2010 and 2011. The validation of the modelled energy balance components leads to a good quality assessment. The model shows very good performance for RN with average model efficiency (NSE) of 0,68 and small relative errors (rRMSE) of about 0,10. For turbulent heat fluxes good results can be achieved with NSE of 0,31 for H and 0,55 for LE, the rRMSE are about 0,21 (H) and 0,18 (LvE). Soil heat flux estimation could be improved using the physically based approach. While the empirical equation leads to negative NSE and rRMSE of about 0,57, the improved approach shows rRMSE of 0,35 and NSE of 0,19. Thus, the improved G estimation can be registered as a valuable contribution for the remote sensing based estimation of energy balance components. / Die Bewässerungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkommen. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den Staaten Mittelasiens bei über 90 %. Wichtige Voraussetzungen für die Landwirtschaft sind der Produktionsfaktor Boden und das Klima. Der Wassergehalt und die Temperatur des Bodens bestimmen im Wesentlichen den Anteil der verfügbaren solaren Strahlungsenergie, der in den Boden geleitet wird. Existierende Fernerkundungsansätze verwenden zur Ermittlung des Bodenwärmestroms überwiegend empirische Gleichungen, da zuverlässige flächenhafte Informationen über die Bodenfeuchte bisher aufgrund räumlich unzureichender messtechnischer Bedingungen nicht ermittelt werden können. In der vorliegenden Arbeit wird ein neu entwickelter, physikalisch-basierter Ansatz vorgestellt, der erstmals räumlich hochaufgelöste Bodenfeuchteinformationen aus Radardatensätzen zur Berechnung des Bodenwärmestroms verwendet. Dieser Ansatz wird zur Lösung der Energiebilanz an der Erdoberfläche verwendet, um indirekt auf die tatsächlichen Evapotranspiration zu schließen. Denn eine realistische Quantifizierung der regionalen, tatsächlichen Evapotranspiration als Komponente der regionalen Wasserbilanz ist eine wichtige Steuerungsgröße und ein Effizienzindikator für das lokale Bewässerungsmanagement.
79

Earth Observation Time Series for Grassland Management Analyses – Development and large-scale Application of a Framework to detect Grassland Mowing Events in Germany / Erdbeobachtungszeitserien zur Analyse der Grünlandbewirtschaftung – Entwicklung und großflächige Anwendung einer Prozessierungsarchitektur zur automatisierten Detektion von Grünlandmahden

Reinermann, Sophie January 2023 (has links) (PDF)
Grasslands shape many landscapes of the earth as they cover about one-third of its surface. They are home and provide livelihood for billions of people and are mainly used as source of forage for animals. However, grasslands fulfill many additional ecosystem functions next to fodder production, such as storage of carbon, water filtration, provision of habitats and cultural values. They play a role in climate change (mitigation) and in preserving biodiversity and ecosystem functions on a global scale. The degree to what these ecosystem functions are present within grassland ecosystems is largely determined by the management. Individual management practices and the use intensity influence the species composition as well as functions, like carbon storage, while higher use intensities (e.g. high mowing frequencies) usually show a negative impact. Especially in Central European countries, like in Germany, the determining influence of grassland management on its physiognomy and ecosystem functions leads to a large variability and small-scale alternations of grassland parcels. Large-scale information on the management and use intensity of grasslands is not available. Consequently, estimations of grassland ecosystem functions are challenging which, however, would be required for large-scale assessments of the status of grassland ecosystems and optimized management plans for the future. The topic of this thesis tackles this gap by investigating the major grassland management practice in Germany, which is mowing, for multiple years, in high spatial resolution and on a national scale. Earth Observation (EO) has the advantage of providing information of the earth’s surface on multi-temporal time steps. An extensive literature review on the use of EO for grassland management and production analyses, which was part of this thesis, showed that in particular research on grasslands consisting of small parcels with a large variety of management and use intensity, like common in Central Europe, is underrepresented. Especially the launch of the Sentinel satellites in the recent past now enables the analyses of such grasslands due to their high spatial and temporal resolution. The literature review specifically on the investigation of grassland mowing events revealed that most previous studies focused on small study areas, were exploratory, only used one sensor type and/or lacked a reference data set with a complete range of management options. Within this thesis a novel framework to detect grassland mowing events over large areas is presented which was applied and validated for the entire area of Germany for multiple years (2018–2021). The potential of both sensor types, optical (Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel-1) was investigated regarding grassland mowing event detection. Eight EO parameters were investigated, namely the Enhanced Vegetation Index (EVI), the backscatter intensity and the interferometric (InSAR) temporal coherence for both available polarization modes (VV and VH), and the polarimetric (PolSAR) decomposition parameters Entropy, K0 and K1. An extensive reference data set was generated based on daily images of webcams distributed in Germany which resulted in mowing information for grasslands with the entire possible range of mowing frequencies – from one to six in Germany – and in 1475 reference mowing events for the four years of interest. For the first time a observation-driven mowing detection approach including data from Sentinel-2 and Sentinel-1 and combining the two was developed, applied and validated on large scale. Based on a subset of the reference data (13 grassland parcels with 44 mowing events) from 2019 the EO parameters were investigated and the detection algorithm developed and parameterized. This analysis showed that a threshold-based change detection approach based on EVI captured grassland mowing events best, which only failed during periods of clouds. All SAR-based parameters showed a less consistent behavior to mowing events, with PolSAR Entropy and InSAR Coherence VH, however, revealing the highest potential among them. A second, combined approach based on EVI and a SARbased parameter was developed and tested for PolSAR Entropy and InSAR VH. To avoid additional false positive detections during periods in which mowing events are anyhow reliably detected using optical data, the SAR-based mowing detection was only initiated during long gaps within the optical time series (< 25 days). Application and validation of these approaches in a focus region revealed that only using EVI leads to the highest accuracies (F1-Score = 0.65) as combining this approach with SAR-based detection led to a strong increase in falsely detected mowing events resulting in a decrease of accuracies (EVI + PolSAR ENT F1-Score = 0.61; EVI + InSAR COH F1-Score = 0.61). The mowing detection algorithm based on EVI was applied for the entire area of Germany for the years 2018-2021. It was revealed that the largest share of grasslands with high mowing frequencies (at least four mowing events) can be found in southern/south-eastern Germany. Extensively used grassland (mown up to two times) is distributed within the entire country with larger shares in the center and north-eastern parts of Germany. These patterns stay constant in general, but small fluctuations between the years are visible. Early mown grasslands can be found in southern/south-eastern Germany – in line with high mowing frequency areas – but also in central-western parts. The years 2019 and 2020 revealed higher accuracies based on the 1475 mowing events of the multi-annual validation data set (F1-Scores of 0.64 and 0.63), 2018 and 2021 lower ones (F1-Score of 0.52 and 0.50). Based on this new, unprecedented data set, potential influencing factors on the mowing dynamics were investigated. Therefore, climate, topography, soil data and information on conservation schemes were related to mowing dynamics for the year 2020, which showed a high number of valid observations and detection accuracy. It was revealed that there are no strong linear relationships between the mowing frequency or the timing of the first mowing event and the investigated variables. However, it was found that for intensive grassland usage certain climatic and topographic conditions have to be fulfilled, while extensive grasslands appear on the entire spectrum of these variables. Further, higher mowing frequencies occur on soils with influence of ground water and lower mowing frequencies in protected areas. These results show the complex interplay between grassland mowing dynamics and external influences and highlight the challenges of policies aiming to protect grassland ecosystem functions and their need to be adapted to regional circumstances. / Grünland prägt viele Landschaften der Erde, da es etwa ein Drittel der Erdoberfläche bedeckt. Es ist Heimat und Lebensgrundlage für Milliarden von Menschen und wird hauptsächlich als Futterquelle für die Viehhaltung genutzt. Neben der Futterproduktion erfüllen Grünlandflächen jedoch viele weitere Ökosystemfunktionen, wie die Speicherung von Kohlenstoff, die Wasserfilterung, die Bereitstellung von Lebensräumen, als auch kulturelle Werte. Sie spielen eine Rolle bei der Abschwächung des Klimawandels und bei der Erhaltung der biologischen Vielfalt und der Ökosystemfunktionen auf globaler Ebene. Das Ausmaß, in dem diese Ökosystemfunktionen in Grünlandökosystemen vorhanden sind, wird weitgehend durch die Bewirtschaftung bestimmt. Einzelne Bewirtschaftungspraktiken und die Nutzungsintensität beeinflussen sowohl die Artenzusammensetzung als auch Funktionen wie die Kohlenstoffspeicherung, wobei höhere Nutzungsintensitäten (z. B. hohe Mähfrequenzen) in der Regel einen negativen Einfluss haben. Insbesondere in mitteleuropäischen Ländern wie Deutschland, führt der bestimmende Einfluss der Grünlandbewirtschaftung auf die Physiognomie und die Ökosystemfunktionen zu einer großen Variabilität und kleinräumigen Differenziertheit einzelner Grünlandflächen. Großräumige Informationen über die Bewirtschaftungs- und Nutzungsintensität von Grünland sind nicht verfügbar. Folglich sind Schätzungen der Ökosystemfunktionen von Grünland eine Herausforderung, die jedoch für großräumige Bewertungen des Zustands von Grünlandökosystemen und optimierte Bewirtschaftungspläne für die Zukunft erforderlich wären. Das Thema dieser Arbeit greift diese Lücke auf, indem es die wichtigste Grünlandbewirtschaftungsmethode in Deutschland, die Mahd, über mehrere Jahre, mit hoher räumlicher Auflösung und auf nationaler Ebene untersucht. Die Erdbeobachtung hat den Vorteil, Informationen über die Erdoberfläche in multitemporalen Zeitschritten zu liefern. Eine umfangreiche Literaturrecherche zur Nutzung von Erdbeobachtung für Grünlandmanagement und Produktion, welche Teil dieser Arbeit war, hat gezeigt, dass insbesondere die Forschung zu kleinparzelligem Grünland mit einer großen Vielfalt an Bewirtschaftungs- und Nutzungsintensitäten, wie in Mitteleuropa gängig, unterrepräsentiert ist. Insbesondere die vor wenigen Jahren erfolgte Start der Sentinel-Satellitenmissionen ermöglicht nun auch die Analyse solcher Grünlandflächen aufgrund der hohen räumlichen und zeitlichen Auflösung ihrer Aufnahmen. Die Literaturrecherche speziell zur Untersuchung von Mähereignissen auf Grünland ergab, dass die meisten bisherigen Studien sich auf kleine Untersuchungsgebiete konzentrierten, explorativ waren, nur einen Sensortyp verwendeten und/oder keinen Referenzdatensatz mit einer vollständigen Palette von Managementoptionen enthielten. Im Rahmen dieser Arbeit wird eine neuartige Methodik zur Erkennung von Grünlandmahdereignissen vorgestellt, welches über mehrere Jahre (2018-2021) flächendeckend in Deutschland angewendet und validiert wurde. Beide Sensortypen – optisch (Sentinel-2) und SAR (Sentinel-1) – wurden hinsichtlich ihres Potentials zur Detektion von Grünlandmahdereignissen ausgewertet. Acht EO-Parameter wurden untersucht, nämlich der Enhanced Vegetation Index (EVI), die Rückstreuintensität und die interferometrische zeitliche Kohärenz (InSAR) für beide verfügbaren Polarimetrien (VV und VH), sowie die polarimetrischen (PolSAR) Zerlegungsparameter Entropie, K0 und K1. Ein umfangreicher Referenzdatensatz wurde auf der Basis täglicher Bilder von Webcams generiert, welche über Deutschland verteilt sind. Dieser enthält Mahdinformationen für Grünland mit dem gesamten möglichen Spektrum an Mähfrequenzen – von eins bis sechs Mahden – und 1475 Referenz-Mähereignisse für die Untersuchungsjahre. Zum ersten Mal wurde ein Ansatz basierend auf tatsächlichen Beobachtungen zur Erkennung der Mahd entwickelt, angewandt und großflächig validiert, der Daten von Sentinel - 2 und Sentinel - 1 verwendet und beide miteinander kombiniert. Anhand eines Subset der Referenzdaten (13 Grünlandparzellen) wurden die EO-Parameter untersucht und der Algorithmus zur Mahddetektion entwickelt und parametrisiert. Die Analyse hat gezeigt, dass ein schwellenwertbasierter Ansatz zur Erkennung von Veränderungen auf der Grundlage des EVI die Ereignisse der Grünlandmahd am besten erfasst, und nur während Bewölkungsperioden Mahden nicht erfolgreich detektiert. Alle SAR-basierten Parameter zeigten ein inkonsistenteres Verhalten gegenüber Mähaktivitäten als EVI, wobei PolSAR Entropie und InSAR Kohärenz VH noch das höchste Potenzial aufwiesen. Ein zweiter, kombinierter Ansatz, der auf EVI und einem SAR Parameter basiert, wurde entwickelt und für PolSAR Entropie und InSAR VH getestet. Aufgrund vieler zusätzlicher Veränderungen, die in den Zeitreihen erkennbar sind, wurde die SAR-basierte Mahddetektion nur während langer Lücken in den optischen Zeitreihen (< 25 Tage) initiiert. Die Anwendung und Validierung dieser Ansätze in einer Fokusregion ergab, dass die Verwendung des EVI-Ansatzes zu den höchsten Genauigkeiten führt (F1-Score = 0.65), da die Kombination dieses Ansatzes mit der SAR-basierten Detektion zu einem starken Anstieg der falsch erkannten Mähereignisse und damit zu einer Abnahme der Genauigkeiten führte (EVI + PolSAR ENT F1-Score=0.61; EVI + InSAR COH F1-Score = 0.61). Der auf EVI basierende Mahddetektionsalgorithmus wurde für die gesamte Fläche Deutschlands für die Jahre 2018–2021 angewendet. Es zeigte sich, dass der größte Anteil an Grünland mit hoher Mähfrequenz (mindestens vier Mähereignisse) im Süden/Südosten Deutschlands zu finden ist. Extensiv genutztes Grünland (bis zu zweimal gemäht) ist über das gesamte Bundesgebiet verteilt, mit größeren Anteilen in der Mitte und im Nordosten Deutschlands. Diese Muster bleiben im Allgemeinen konstant, aber es sind kleine Schwankungen zwischen den Jahren erkennbar. Früh gemähtes Grünland findet sich in Süd-/Südostdeutschland - entsprechend den Gebieten mit hoher Mähfrequenz -, aber auch in Mittel- und Westdeutschland. Die Jahre 2019 und 2020 zeigen höhere Genauigkeiten (F1- Scores von 0.64 und 0.63), 2018 und 2021 niedrigere (F1-Score von 0.52 und 0.50). Darüber hinaus wurden mögliche Einflussfaktoren auf die Mahddynamik untersucht. So wurden Klima, Topografie, Bodendaten und Informationen über Schutzmaßnahmen mit der Mahddynamik für das Jahr 2020 in Verbindung gebracht, für welches eine hohe Anzahl gültiger Beobachtungen und eine hohe Erfassungsgenauigkeit erzielt werden konnten. Es zeigte sich, dass es keine starken linearen Beziehungen zwischen der Mahdhäufigkeit oder dem Zeitpunkt der ersten Mahd und den untersuchten Variablen gibt. Es wurde jedoch festgestellt, dass für eine intensive Grünlandnutzung bestimmte klimatische und topografische Bedingungen erfüllt sein müssen, wohingegen extensive Grünlandflächen im gesamten Spektrum dieser Variablen auftreten. Außerdem treten auf Böden mit Grundwassereinfluss höhere und in Schutzgebieten niedrigere Mahdhäufigkeiten auf. Diese Ergebnisse zeigen das komplexe Zusammenspiel zwischen der Dynamik der Grünlandmahd und äußeren Einflüssen und verdeutlichen die Herausforderungen in der gezielten Erstellung von Maßnahmen zum Schutz von Grünland-Ökosystemfunktionen und die Notwendigkeit diese regional anzupassen.
80

Fernerkundung und maschinelles Lernen zur Erfassung von urbanem Grün - Eine Analyse am Beispiel der Verteilungsgerechtigkeit in Deutschland / Remote Sensing and Machine Learning to Capture Urban Green – An Analysis Using the Example of Distributive Justice in Germany

Weigand, Matthias Johann January 2024 (has links) (PDF)
Grünflächen stellen einen der wichtigsten Umwelteinflüsse in der Wohnumwelt der Menschen dar. Einerseits wirken sie sich positiv auf die physische und mentale Gesundheit der Menschen aus, andererseits können Grünflächen auch negative Wirkungen anderer Faktoren abmildern, wie beispielsweise die im Laufe des Klimawandels zunehmenden Hitzeereignisse. Dennoch sind Grünflächen nicht für die gesamte Bevölkerung gleichermaßen zugänglich. Bestehende Forschung im Kontext der Umweltgerechtigkeit (UG) konnte bereits aufzeigen, dass unterschiedliche sozio-ökonomische und demographische Gruppen der deutschen Bevölkerung unterschiedlichen Zugriff auf Grünflächen haben. An bestehenden Analysen von Umwelteinflüssen im Kontext der UG wird kritisiert, dass die Auswertung geographischer Daten häufig auf zu stark aggregiertem Level geschieht, wodurch lokal spezifische Expositionen nicht mehr genau abgebildet werden. Dies trifft insbesondere für großflächig angelegte Studien zu. So werden wichtige räumliche Informationen verloren. Doch moderne Erdbeobachtungs- und Geodaten sind so detailliert wie nie und Methoden des maschinellen Lernens ermöglichen die effiziente Verarbeitung zur Ableitung höherwertiger Informationen. Das übergeordnete Ziel dieser Arbeit besteht darin, am Beispiel von Grünflächen in Deutschland methodische Schritte der systematischen Umwandlung umfassender Geodaten in relevante Geoinformationen für die großflächige und hochaufgelöste Analyse von Umwelteigenschaften aufzuzeigen und durchzuführen. An der Schnittstelle der Disziplinen Fernerkundung, Geoinformatik, Sozialgeographie und Umweltgerechtigkeitsforschung sollen Potenziale moderner Methoden für die Verbesserung der räumlichen und semantischen Auflösung von Geoinformationen erforscht werden. Hierfür werden Methoden des maschinellen Lernens eingesetzt, um Landbedeckung und -nutzung auf nationaler Ebene zu erfassen. Diese Entwicklungen sollen dazu beitragen bestehende Datenlücken zu schließen und Aufschluss über die Verteilungsgerechtigkeit von Grünflächen zu bieten. Diese Dissertation gliedert sich in drei konzeptionelle Teilschritte. Im ersten Studienteil werden Erdbeobachtungsdaten der Sentinel-2 Satelliten zur deutschlandweiten Klassifikation von Landbedeckungsinformationen verwendet. In Kombination mit punktuellen Referenzdaten der europaweiten Erfassung für Landbedeckungs- und Landnutzungsinformationen des Land Use and Coverage Area Frame Survey (LUCAS) wird ein maschinelles Lernverfahren trainiert. In diesem Kontext werden verschiedene Vorverarbeitungsschritte der LUCAS-Daten und deren Einfluss auf die Klassifikationsgenauigkeit beleuchtet. Das Klassifikationsverfahren ist in der Lage Landbedeckungsinformationen auch in komplexen urbanen Gebieten mit hoher Genauigkeit abzuleiten. Ein Ergebnis des Studienteils ist eine deutschlandweite Landbedeckungsklassifikation mit einer Gesamtgenauigkeit von 93,07 %, welche im weiteren Verlauf der Arbeit genutzt wird, um grüne Landbedeckung (GLC) räumlich zu quantifizieren. Im zweiten konzeptionellen Teil der Arbeit steht die differenzierte Betrachtung von Grünflächen anhand des Beispiels öffentlicher Grünflächen (PGS), die häufig Gegenstand der UG-Forschung ist, im Vordergrund. Doch eine häufig verwendete Quelle für räumliche Daten zu öffentlichen Grünflächen, der European Urban Atlas (EUA), wird bisher nicht flächendeckend für Deutschland erhoben. Dieser Studienteil verfolgt einen datengetriebenen Ansatz, die Verfügbarkeit von öffentlichem Grün auf der räumlichen Ebene von Nachbarschaften für ganz Deutschland zu ermitteln. Hierfür dienen bereits vom EUA erfasste Gebiete als Referenz. Mithilfe einer Kombination von Erdbeobachtungsdaten und Informationen aus dem OpenStreetMap-Projekt wird ein Deep Learning -basiertes Fusionsnetzwerk erstellt, welche die verfügbare Fläche von öffentlichem Grün quantifiziert. Das Ergebnis dieses Schrittes ist ein Modell, welches genutzt wird, um die Menge öffentlicher Grünflächen in der Nachbarschaft zu schätzen (𝑅 2 = 0.952). Der dritte Studienteil greift die Ergebnisse der ersten beiden Studienteile auf und betrachtet die Verteilung von Grünflächen in Deutschland unter Hinzunahme von georeferenzierten Bevölkerungsdaten. Diese exemplarische Analyse unterscheidet dabei Grünflächen nach zwei Typen: GLC und PGS. Zunächst wird mithilfe deskriptiver Statistiken die generelle Grünflächenverteilung in der Bevölkerung Deutschlands beleuchtet. Daraufhin wird die Verteilungsgerechtigkeit anhand gängiger Gerechtigkeitsmetriken bestimmt. Abschließend werden die Zusammenhänge zwischen der demographischen Komposition der Nachbarschaft und der verfügbaren Menge von Grünflächen anhand dreier exemplarischer soziodemographischer Gesellschaftsgruppen untersucht. Die Analyse zeigt starke Unterschiede der Verfügbarkeit von PGS zwischen städtischen und ländlichen Gebieten. Ein höherer Prozentsatz der Stadtbevölkerung hat Zugriff das Mindestmaß von PGS gemessen an der Vorgabe der Weltgesundheitsorganisation. Die Ergebnisse zeigen auch einen deutlichen Unterschied bezüglich der Verteilungsgerechtigkeit zwischen GLC und PGS und verdeutlichen die Relevanz der Unterscheidung von Grünflächentypen für derartige Untersuchungen. Die abschließende Betrachtung verschiedener Bevölkerungsgruppen arbeitet Unterschiede auf soziodemographischer Ebene auf. In der Zusammenschau demonstriert diese Arbeit wie moderne Geodaten und Methoden des maschinellen Lernens genutzt werden können bisherige Limitierungen räumlicher Datensätze zu überwinden. Am Beispiel von Grünflächen in der Wohnumgebung der Bevölkerung Deutschlands wird gezeigt, dass landesweite Analysen zur Umweltgerechtigkeit durch hochaufgelöste und lokal feingliedrige geographische Informationen bereichert werden können. Diese Arbeit verdeutlicht, wie die Methoden der Erdbeobachtung und Geoinformatik einen wichtigen Beitrag leisten können, die Ungleichheit der Wohnumwelt der Menschen zu identifizieren und schlussendlich den nachhaltigen Siedlungsbau in Form von objektiven Informationen zu unterstützen und überwachen. / Green spaces are one of the most important environmental factors for humans in the living environment. On the one hand they provide benefits to people’s physical and mental health, on the other hand they allow for the mitigation of negative impacts of environmental stressors like heat waves which are increasing as a result of climate change. Yet, green spaces are not equally accessible to all people. Existing literature in the context of Environmental Justice (EJ) research has shown that the access to green space varies among different socio-economic and demographic groups in Germany. However, previous studies in the context of EJ were criticized for using strongly spatially aggregated data for their analyses resulting in a loss of spatial detail on local environmental exposure metrics. This is especially true for large-scale studies where important spatial information often get lost. In this context, modern earth observation and geospatial data are more detailed than ever, and machine learning methods enable efficient processing to derive higher value information for diverse applications. The overall objective of this work is to demonstrate and implement methodological steps that allow for the transformation of vast geodata into relevant geoinformation for the large-scale and high-resolution analysis of environmental characteristics using the example of green spaces in Germany. By bridging the disciplines remote sensing, geoinformatics, social geography and environmental justice research, potentials of modern methods for the improvement of spatial and semantic resolution of geoinformation are explored. For this purpose, machine learning methods are used to map land cover and land use on a national scale. These developments will help to close existing data gaps and provide information on the distributional equity of green spaces. This dissertation comprises three conceptual steps. In the first part of the study, earth observation data from the Sentinel-2 satellites are used to derive land cover information across Germany. In combination with point reference data on land cover and land use from the paneuropean Land Use and Coverage Area Frame Survey (LUCAS) a machine learning model is trained. Therein, different preprocessing steps of the LUCAS data and their influence on the classification accuracy are highlighted. The classification model derives land cover information with high accuracy even in complex urban areas. One result of the study is a Germany-wide land cover classification with an overall accuracy of 93.07 % which is used in the further course of the dissertation to spatially quantify green land cover (GLC). The second conceptual part of this study focuses on the semantic differentiation of green spaces using the example of public green spaces (PGS), which is often the subject of EJ research. A frequently used source of spatial data on public green spaces, the European Urban Atlas (EUA),however, is not available for all of Germany. This part of the study takes a data-driven approach to determine the availability of public green space at the spatial level of neighborhoods for all of Germany. For this purpose, areas already covered by the EUA serve as a reference. Using a combination of earth observation data and information from the OpenStreetMap project, a Deep Learning -based fusion network is created that quantifies the available area of public green space. The result of this step is a model that is utilized to estimate the amount of public green space in the neighborhood (𝑅 2 = 0.952). The third part of this dissertation builds upon the results of the first two parts and integrates georeferenced population data to study the socio-spatial distribution of green spaces in Germany. This exemplary analysis distinguishes green spaces according to two types: GLC and PGS. In this,first, descriptive statistics are used to examine the overall distribution of green spaces available to the German population. Then, the distributional equality is determined using established equality metrics. Finally, the relationships between the demographic composition of the neighborhood and the available amount of green space are examined using three exemplary sociodemographic groups. The analysis reveals strong differences in PGS availability between urban and rural areas. Compared to the rural population, a higher percentage of the urban population has access to the minimum level of PGS defined as a target by the World Health Organization (WHO). The results also show a clear deviation in terms of distributive equality between GLC and PGS, highlighting the relevance of distinguishing green space types for such studies. The final analysis of certain population groups addresses differences at the sociodemographic level. In summary, this dissertation demonstrates how previous limitations of spatial datasets can be overcome through a combination of modern geospatial data and machine learning methods. Using the example of green spaces in the residential environment of the population in Germany,it is shown that nationwide analyses of environmental justice can be enriched by high-resolution and locally fine-grained geographic information. This study illustrates how earth observation and methods of geoinformatics can make an important contribution to identifying inequalities in people’s living environment. Such objective information can ultimately be deployed to support and monitor sustainable urban development.

Page generated in 0.0788 seconds