• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Umweltverträglichkeits- und Umweltgerechtigkeitsanalyse Mobilitätsberichterstattung. Methodische Vorgehensweise in Berlin Pankow

Glock, Jan Peter, Becker, Udo 02 May 2023 (has links)
Der Bericht beschreibt die Datenbasis und das methodische Vorgehen bei der Durchführung der Umweltverträglichkeitsanalyse und der Umweltgerechtigkeitsanalyse im Projekt Forschungsprojekt MobilBericht.:1 Ziele der Umweltverträglichkeits­ und Umweltgerechtigkeitsanalyse ........................................... 5 2 Grundlagendaten............................................................................................................................. 5 3 Lärm ................................................................................................................................................. 7 4 Luftbelastung ................................................................................................................................... 8 5 Erholungsflächen ........................................................................................................................... 10 6 Sozialstruktur ................................................................................................................................. 15 7 Mehrfachbelastung ....................................................................................................................... 16 8 Umweltgerechtigkeitsanalyse ....................................................................................................... 17
2

Fernerkundung und maschinelles Lernen zur Erfassung von urbanem Grün - Eine Analyse am Beispiel der Verteilungsgerechtigkeit in Deutschland / Remote Sensing and Machine Learning to Capture Urban Green – An Analysis Using the Example of Distributive Justice in Germany

Weigand, Matthias Johann January 2024 (has links) (PDF)
Grünflächen stellen einen der wichtigsten Umwelteinflüsse in der Wohnumwelt der Menschen dar. Einerseits wirken sie sich positiv auf die physische und mentale Gesundheit der Menschen aus, andererseits können Grünflächen auch negative Wirkungen anderer Faktoren abmildern, wie beispielsweise die im Laufe des Klimawandels zunehmenden Hitzeereignisse. Dennoch sind Grünflächen nicht für die gesamte Bevölkerung gleichermaßen zugänglich. Bestehende Forschung im Kontext der Umweltgerechtigkeit (UG) konnte bereits aufzeigen, dass unterschiedliche sozio-ökonomische und demographische Gruppen der deutschen Bevölkerung unterschiedlichen Zugriff auf Grünflächen haben. An bestehenden Analysen von Umwelteinflüssen im Kontext der UG wird kritisiert, dass die Auswertung geographischer Daten häufig auf zu stark aggregiertem Level geschieht, wodurch lokal spezifische Expositionen nicht mehr genau abgebildet werden. Dies trifft insbesondere für großflächig angelegte Studien zu. So werden wichtige räumliche Informationen verloren. Doch moderne Erdbeobachtungs- und Geodaten sind so detailliert wie nie und Methoden des maschinellen Lernens ermöglichen die effiziente Verarbeitung zur Ableitung höherwertiger Informationen. Das übergeordnete Ziel dieser Arbeit besteht darin, am Beispiel von Grünflächen in Deutschland methodische Schritte der systematischen Umwandlung umfassender Geodaten in relevante Geoinformationen für die großflächige und hochaufgelöste Analyse von Umwelteigenschaften aufzuzeigen und durchzuführen. An der Schnittstelle der Disziplinen Fernerkundung, Geoinformatik, Sozialgeographie und Umweltgerechtigkeitsforschung sollen Potenziale moderner Methoden für die Verbesserung der räumlichen und semantischen Auflösung von Geoinformationen erforscht werden. Hierfür werden Methoden des maschinellen Lernens eingesetzt, um Landbedeckung und -nutzung auf nationaler Ebene zu erfassen. Diese Entwicklungen sollen dazu beitragen bestehende Datenlücken zu schließen und Aufschluss über die Verteilungsgerechtigkeit von Grünflächen zu bieten. Diese Dissertation gliedert sich in drei konzeptionelle Teilschritte. Im ersten Studienteil werden Erdbeobachtungsdaten der Sentinel-2 Satelliten zur deutschlandweiten Klassifikation von Landbedeckungsinformationen verwendet. In Kombination mit punktuellen Referenzdaten der europaweiten Erfassung für Landbedeckungs- und Landnutzungsinformationen des Land Use and Coverage Area Frame Survey (LUCAS) wird ein maschinelles Lernverfahren trainiert. In diesem Kontext werden verschiedene Vorverarbeitungsschritte der LUCAS-Daten und deren Einfluss auf die Klassifikationsgenauigkeit beleuchtet. Das Klassifikationsverfahren ist in der Lage Landbedeckungsinformationen auch in komplexen urbanen Gebieten mit hoher Genauigkeit abzuleiten. Ein Ergebnis des Studienteils ist eine deutschlandweite Landbedeckungsklassifikation mit einer Gesamtgenauigkeit von 93,07 %, welche im weiteren Verlauf der Arbeit genutzt wird, um grüne Landbedeckung (GLC) räumlich zu quantifizieren. Im zweiten konzeptionellen Teil der Arbeit steht die differenzierte Betrachtung von Grünflächen anhand des Beispiels öffentlicher Grünflächen (PGS), die häufig Gegenstand der UG-Forschung ist, im Vordergrund. Doch eine häufig verwendete Quelle für räumliche Daten zu öffentlichen Grünflächen, der European Urban Atlas (EUA), wird bisher nicht flächendeckend für Deutschland erhoben. Dieser Studienteil verfolgt einen datengetriebenen Ansatz, die Verfügbarkeit von öffentlichem Grün auf der räumlichen Ebene von Nachbarschaften für ganz Deutschland zu ermitteln. Hierfür dienen bereits vom EUA erfasste Gebiete als Referenz. Mithilfe einer Kombination von Erdbeobachtungsdaten und Informationen aus dem OpenStreetMap-Projekt wird ein Deep Learning -basiertes Fusionsnetzwerk erstellt, welche die verfügbare Fläche von öffentlichem Grün quantifiziert. Das Ergebnis dieses Schrittes ist ein Modell, welches genutzt wird, um die Menge öffentlicher Grünflächen in der Nachbarschaft zu schätzen (𝑅 2 = 0.952). Der dritte Studienteil greift die Ergebnisse der ersten beiden Studienteile auf und betrachtet die Verteilung von Grünflächen in Deutschland unter Hinzunahme von georeferenzierten Bevölkerungsdaten. Diese exemplarische Analyse unterscheidet dabei Grünflächen nach zwei Typen: GLC und PGS. Zunächst wird mithilfe deskriptiver Statistiken die generelle Grünflächenverteilung in der Bevölkerung Deutschlands beleuchtet. Daraufhin wird die Verteilungsgerechtigkeit anhand gängiger Gerechtigkeitsmetriken bestimmt. Abschließend werden die Zusammenhänge zwischen der demographischen Komposition der Nachbarschaft und der verfügbaren Menge von Grünflächen anhand dreier exemplarischer soziodemographischer Gesellschaftsgruppen untersucht. Die Analyse zeigt starke Unterschiede der Verfügbarkeit von PGS zwischen städtischen und ländlichen Gebieten. Ein höherer Prozentsatz der Stadtbevölkerung hat Zugriff das Mindestmaß von PGS gemessen an der Vorgabe der Weltgesundheitsorganisation. Die Ergebnisse zeigen auch einen deutlichen Unterschied bezüglich der Verteilungsgerechtigkeit zwischen GLC und PGS und verdeutlichen die Relevanz der Unterscheidung von Grünflächentypen für derartige Untersuchungen. Die abschließende Betrachtung verschiedener Bevölkerungsgruppen arbeitet Unterschiede auf soziodemographischer Ebene auf. In der Zusammenschau demonstriert diese Arbeit wie moderne Geodaten und Methoden des maschinellen Lernens genutzt werden können bisherige Limitierungen räumlicher Datensätze zu überwinden. Am Beispiel von Grünflächen in der Wohnumgebung der Bevölkerung Deutschlands wird gezeigt, dass landesweite Analysen zur Umweltgerechtigkeit durch hochaufgelöste und lokal feingliedrige geographische Informationen bereichert werden können. Diese Arbeit verdeutlicht, wie die Methoden der Erdbeobachtung und Geoinformatik einen wichtigen Beitrag leisten können, die Ungleichheit der Wohnumwelt der Menschen zu identifizieren und schlussendlich den nachhaltigen Siedlungsbau in Form von objektiven Informationen zu unterstützen und überwachen. / Green spaces are one of the most important environmental factors for humans in the living environment. On the one hand they provide benefits to people’s physical and mental health, on the other hand they allow for the mitigation of negative impacts of environmental stressors like heat waves which are increasing as a result of climate change. Yet, green spaces are not equally accessible to all people. Existing literature in the context of Environmental Justice (EJ) research has shown that the access to green space varies among different socio-economic and demographic groups in Germany. However, previous studies in the context of EJ were criticized for using strongly spatially aggregated data for their analyses resulting in a loss of spatial detail on local environmental exposure metrics. This is especially true for large-scale studies where important spatial information often get lost. In this context, modern earth observation and geospatial data are more detailed than ever, and machine learning methods enable efficient processing to derive higher value information for diverse applications. The overall objective of this work is to demonstrate and implement methodological steps that allow for the transformation of vast geodata into relevant geoinformation for the large-scale and high-resolution analysis of environmental characteristics using the example of green spaces in Germany. By bridging the disciplines remote sensing, geoinformatics, social geography and environmental justice research, potentials of modern methods for the improvement of spatial and semantic resolution of geoinformation are explored. For this purpose, machine learning methods are used to map land cover and land use on a national scale. These developments will help to close existing data gaps and provide information on the distributional equity of green spaces. This dissertation comprises three conceptual steps. In the first part of the study, earth observation data from the Sentinel-2 satellites are used to derive land cover information across Germany. In combination with point reference data on land cover and land use from the paneuropean Land Use and Coverage Area Frame Survey (LUCAS) a machine learning model is trained. Therein, different preprocessing steps of the LUCAS data and their influence on the classification accuracy are highlighted. The classification model derives land cover information with high accuracy even in complex urban areas. One result of the study is a Germany-wide land cover classification with an overall accuracy of 93.07 % which is used in the further course of the dissertation to spatially quantify green land cover (GLC). The second conceptual part of this study focuses on the semantic differentiation of green spaces using the example of public green spaces (PGS), which is often the subject of EJ research. A frequently used source of spatial data on public green spaces, the European Urban Atlas (EUA),however, is not available for all of Germany. This part of the study takes a data-driven approach to determine the availability of public green space at the spatial level of neighborhoods for all of Germany. For this purpose, areas already covered by the EUA serve as a reference. Using a combination of earth observation data and information from the OpenStreetMap project, a Deep Learning -based fusion network is created that quantifies the available area of public green space. The result of this step is a model that is utilized to estimate the amount of public green space in the neighborhood (𝑅 2 = 0.952). The third part of this dissertation builds upon the results of the first two parts and integrates georeferenced population data to study the socio-spatial distribution of green spaces in Germany. This exemplary analysis distinguishes green spaces according to two types: GLC and PGS. In this,first, descriptive statistics are used to examine the overall distribution of green spaces available to the German population. Then, the distributional equality is determined using established equality metrics. Finally, the relationships between the demographic composition of the neighborhood and the available amount of green space are examined using three exemplary sociodemographic groups. The analysis reveals strong differences in PGS availability between urban and rural areas. Compared to the rural population, a higher percentage of the urban population has access to the minimum level of PGS defined as a target by the World Health Organization (WHO). The results also show a clear deviation in terms of distributive equality between GLC and PGS, highlighting the relevance of distinguishing green space types for such studies. The final analysis of certain population groups addresses differences at the sociodemographic level. In summary, this dissertation demonstrates how previous limitations of spatial datasets can be overcome through a combination of modern geospatial data and machine learning methods. Using the example of green spaces in the residential environment of the population in Germany,it is shown that nationwide analyses of environmental justice can be enriched by high-resolution and locally fine-grained geographic information. This study illustrates how earth observation and methods of geoinformatics can make an important contribution to identifying inequalities in people’s living environment. Such objective information can ultimately be deployed to support and monitor sustainable urban development.
3

Sozialräumliche Verteilung von verkehrsbedingtem Lärm und Luftschadstoffen am Beispiel von Berlin / Spatial and social distribution of transportation noise and air pollution in Berlin

Becker, Thilo 19 May 2016 (has links) (PDF)
Hintergrund und Zielstellung Verkehr verursacht, neben seinem großen Nutzen, auch negative Effekte auf die Gesellschaft. Dazu zählen Stau, Unfälle und Umweltbelastungen. Aus Perspektive der sozialen Gerechtigkeit stellt sich die Frage, ob das Niveau der Umweltbelastung, dem Bevölkerungsgruppen ausgesetzt sind, ungleich verteilt ist. Bisher wurde dieser Frage in Deutschland primär aus Perspektive der Gesundheitswissenschaften nachgegangen. Dabei wurden Personen in eher kleinen Stichproben zu ihrer sozio-ökonomischen Situation befragt und die individuelle Belastung durch Schadstoffe an ihrem Wohnort ermittelt. Auf diese Weise konnten bei Luftschadstoffen und Lärm überdurchschnittliche Belastungen von Menschen mit niedrigem sozio-ökonomischen Status nachgewiesen werden. Flächendeckend vorliegende Umweltdaten und Statistiken zu der gesamten Bevölkerung eines großen Untersuchungsgebietes wurden dabei allerdings kaum einbezogen. Deshalb wird in der vorliegenden Dissertation untersucht, wie die Belastung durch verkehrsbedingte Lärm- und Luftschadstoffbelastungen zwischen sozio-ökonomischen Gruppen der Bevölkerung verteilt ist. Dabei werden neben der absoluten Belastung auch die gesundheitlichen Auswirkungen berücksichtigt. Im gewählten Untersuchungsgebiet Berlin werden dafür geeignete räumlich-statistische Bezugseinheiten verwendet, um kleinräumige Belastungsunterschiede flächendeckend zu berücksichtigen. Die normative Bewertung, nach welchen Kriterien Ungleichverteilungen aus gesellschaftlicher und wissenschaftlicher Sicht als „ungerecht“ einzustufen sind, wird bei der deskriptiven Analyse nicht dargestellt. Bewertung der Umwelteffekte Für die Analyse der sozialräumlichen Verteilung von Lärm und Luftschadstoffen ist es sinnvoll, einfach handhabbare Indikatoren zu entwickeln, mit denen die absolute Umweltbelastung zum einen räumlich und zum anderen für sozio-ökonomische Gruppen aggregierbar ist. Dafür werden, entsprechend dem Konzept der externen Kosten, Kostensätze entwickelt. Somit kann zusätzlich zur Analyse der sozialräumlichen Verteilung auch die ökonomische Tragweite der Umweltbelastungen verdeutlicht werden. Mit den externen Kosten werden die Umwelteffekte bewertet, die von den Verkehrsteilnehmern bei ihrer Entscheidung über konkrete Fahrten nicht berücksichtigt werden. Stattdessen sind von den Effekten unbeteiligte Dritte betroffen. Bei Straßen-, Schienen und Fluglärm werden die Gesundheitswirkungen Bluthochdruck, Herz-Kreislauf-Erkrankungen einschließlich Herzinfarkt sowie Belästigungen betrachtet. Bei den Luftschadstoffen wird eine Methode entwickelt, mit der, basierend auf der Luftschadstoffkonzentration in der Außenluft, die durch Stickoxid und Feinstaub verursachten Atemwegs- und Herz- Kreislauf-Erkrankungen betrachtet werden. Grundlage der Bewertung sind jeweils Expositions-Wirkungs-Beziehungen aus der Literatur, die die Risikoerhöhung durch die Umweltwirkungen beschreiben. Außerdem fließen die Behandlungskosten der Krankheiten, die Kosten verlorener Erwerbstätigkeit und die Kosten verlorener Lebensjahre in die Bestimmung der Kostensätze ein. Die Kostensätze je Belastetem und Jahr variieren nach Expositionsniveau. Methodisches Vorgehen Nach der Entwicklung von immissionsbasierten Kostensätzen werden jedem gemeldeten Bewohner in Berlin möglichst exakt die Lärm- und Luftschadstoffbelastung am Wohnstandort sowie sozio-ökonomische Daten zugeordnet. Alle Daten liegen in amtlichen Quellen vor, sind aber bisher nicht zusammengeführt worden. 1. Für Lärm wird die Strategische Lärmkarte verwendet, die in Berlin für alle Wohngebäude die modellierte Lärmbelastung mit dem Lärmpegel LDEN für Straßen-, Schienen-, Flug- und Gesamtlärm enthält. Die Beschränkung auf Hauptverkehrsstraßen als Lärmquelle führt zu Ungenauigkeiten beim dominierenden Straßenlärm. Viele Bewohner, die im Bereich des Straßennebennetzes leben, sind modellbedingt nur sehr niedrigen Lärmpegeln ausgesetzt. Hier ist von einer Unterschätzung der Belastetenzahlen auszugehen. Um diesem methodischen Effekt Rechnung zu tragen, erfolgt eine Quantifizierung der Unterschätzung anhand der detaillierteren Dresdner Strategischen Lärmkarte und einer exemplarischen Vollkartierung eines Stadtteils mit dem Gesamtnetz als Lärmquelle. Darauf aufbauend wird für Berlin eine Sensitivitätsanalyse durchgeführt, bei der Mindestbelastungen durch Straßenlärm in der gesamten Stadt angenommen werden. 2. Bei Luftschadstoffen liegen modellierte Immissionen von Stickstoffdioxid und Feinstaub in Form einer Rasterkarte für die städtische Hintergrundbelastung und als Netzkarte für die Zusatzbelastung durch Verkehr entlang des Hauptstraßennetzes vor. Im Rahmen der Datenaufbereitung wird Straßenabschnitten die jeweilige Belastung zugeordnet. 3. Zur Beschreibung der sozio-ökonomischen Zusammensetzung der Bevölkerung liegen auf der Ebene von Straßenabschnitten Quoten der SGB-II-Empfänger („Hartz IV“-Sozialleistungen) und der Einwohner mit Migrationshintergrund (Ausländer und deren Nachkommen) in der amtlichen Statistik vor. In diesen Straßenabschnitten leben durchschnittlich 120 Einwohner. Der zentrale Schritt der Datenaufbereitung ist die Zusammenführung der Umwelt- und Sozialdaten auf der Ebene der Straßenabschnitte. Anhand der Anzahl der Luftschadstoff und Lärmbelasteten und mit Hilfe der Kostensätze werden die externen Kosten berechnet. Ergebnisse Wird zunächst die Umweltbelastung betrachtet, zeigt sich die ungleichmäßige Verteilung. So sind knapp 30 % der Bevölkerung nach der Strategischen Lärmkarte mit dem Lärmpegel LDEN > 55 dB belastet. Geringe Bevölkerungsanteile sind auch sehr hohen Belastungen ausgesetzt. Wird die Anzahl der Belasteten mit den Kostensätzen der externen Kosten multipliziert, entspricht diese Lärmbelastung knapp 130 Mio. Euro pro Jahr. Den größten Anteil verursacht Straßenlärm, gefolgt von Fluglärm. Entsprechend hoch sind die Belastungen durch Verkehrslärm im Bereich des Flughafens Berlin-Tegel (TXL) sowie am äußeren Rand und innerhalb der Berliner Ringbahn. Durch Luftschadstoffe sind alle Menschen in Berlin belastet, allerdings in unterschiedlichem Ausmaß. Belastungen oberhalb gesetzlicher Schwellenwerte sind in Bezug auf Feinstaub rund 142.000 Menschen und in Bezug auf Stickoxide rund 81.000 Menschen ausgesetzt. Dies entspricht externen Kosten für die Gesellschaft in Höhe von 1,9 Mrd. Euro pro Jahr. Während im Stadtzentrum die Belastung am höchsten ist, fällt sie zum Stadtrand hin tendenziell ab. Werden die externen Kosten durch Luftschadstoffe betrachtet, sind Straßenabschnitte mit hoher Migrationsquote um Faktor 2,8 stärker belastet als Straßenabschnitte mit niedriger Migrationsquote. Es tritt eine mittlere Korrelation zwischen hoher Migrationsquote und hoher Belastung auf. Bei Straßenlärm liegt der Faktor zwischen niedriger und hoher Migrationsquote bei 3,4 (Faktor 1,9 bei SGB-II-Quote). Es besteht bei Lärm eine geringe Korrelation zwischen Migrationsquote und Belastung. Die Strategische Lärmkarte für Straßenlärm beinhaltet nur die Belastung entlang des Hauptstraßennetzes. Die Quantifizierung der Unterschätzung zeigt, dass die Anzahl der Lärmbelasteten mit LDEN > 55 dB etwa 52 % höher ist als in der Berliner Strategischen Lärmkarte angegeben. Die stärksten Unterschätzungen treten im Intervall 55 < LDEN < 65 dB auf. Werden in der Sensitivitätsanalyse Straßenlärmbelastungen für alle Gebäude in Berlin angenommen, bleibt der Belastungsunterschied zwischen hohen und niedrigen Migrations- und SGB-II-Quoten bestehen. Über die Status-quo-Analyse hinaus ermöglichen die Daten einzelne Auswertungen zu Entwicklungen im Zeitverlauf. Werden die Strategischen Lärmkarten 2007 und 2012 miteinander verglichen, können, vorbehaltlich methodischer Einschränkungen, Minderungen bei der Lärmbelastung festgestellt werden. So fanden beispielsweise die Maßnahmen der Lärmaktionsplanung verstärkt in Straßenabschnitten mit hohen Migrations- und SGB-II-Quoten statt. Allerdings kann ein Effekt der Maßnahmen auf die Verteilung der Lärmbelastung nach Migrations- und SGB-II-Quoten nicht festgestellt werden. Das größte Potential zur Lärmminderung in Berlin hat die Verlegung des Flugverkehrs von TXL zum Flughafen Berlin Brandenburg (BER). Während dann die Zahl der Belasteten in Berlin sehr stark sinken wird, wird sie im Land Brandenburg nur leicht ansteigen. Insgesamt wird die Summe aller Fluglärmbelasteten LDEN > 55 dB von 256.000 auf 38.000 sinken. Bedingt durch die strukturell unterschiedliche Dichte und Zusammensetzung der Bevölkerung im Umfeld vom Flughafen BER werden nach Inbetriebnahme von BER fast nur Gebiete mit momentan niedrigen Migrations- und SGB-II-Quoten belastet sein. Schlussfolgerungen sowie weiterer Forschungsbedarf Die dargestellte Ungleichverteilung der Lärm- und Luftschadstoffbelastung markiert vermutlich eher die Untergrenze der realen Situation, da unter anderem die soziale Verteilung innerhalb von Gebäudekomplexen, z. B. bei der Hinterhausstruktur, unberücksichtigt bleibt. Außerdem gibt es Hinweise, dass weitere Benachteiligungen wie schlechte Erreichbarkeit oder bioklimatische Belastungen die Ungleichverteilung zusätzlich verstärken. Anhand der Methodik und der vorliegenden Daten kann nicht analysiert werden, durch welche Ursachen sich die heutige Struktur herausgebildet hat. Aus Untersuchungen zu externen Kosten ist bekannt, dass in Wohnungen mit höherer Lärmbelastung nur geringere Mieten gefordert werden. Diese geringeren Mieten können für Menschen mit niedrigem Einkommensniveau anziehend sein. Damit würde es auch bei einer Minderung der Umweltbelastung weiterhin Ungleichverteilungen geben. Diese Ungleichverteilung sollte ein Anlass sein, die gesundheitsrelevanten Lärm- und Luftschadstoffbelastungen wie folgt zu mindern: 1. Eine Zunahme der Umweltbelastung von sozio-ökonomisch benachteiligten Bevölkerungsgruppen sollte vermieden werden. Als Bewertungsgrundlage kann die durchgeführte flächendeckende Analyse dienen. 2. Das bereits bestehende Belastungsniveau sollte insgesamt gesenkt werden. Nur so erhalten mehr Menschen die Chance, in einer ihrer Gesundheit förderlichen Umgebung zu leben. 3. Die sozial benachteiligten Bevölkerungsgruppen sollten bei der Maßnahmenpriorisierung als zusätzlicher Faktor berücksichtigt werden. Notwendig für eine Fortschreibung des Analyseansatzes und die Übertragung auf andere Untersuchungsgebiete ist die Datenverfügbarkeit. Einerseits müssen Daten zur sozio-ökonomischen Struktur auf der Ebene von möglichst kleinräumigen Bezugseinheiten vorliegen. Andererseits müssen die Umweltdaten flächendeckend die reale Belastung widerspiegeln und von der Datenstruktur her für eine Weiterverarbeitung geeignet sein. Raum für weitere Forschungen bietet die Bewertung der sozio-ökonomischen Daten hinsichtlich ihrer Eignung bei Analysen der sozialräumlichen Verteilung. Neben der Forschung nach Gründen der Ungleichverteilung sollte auch die Rolle der Verursacher und eine mögliche Bilanz zwischen Verursachern und Belasteten betrachtet werden. Methodisch kann dazu u. a. die fortschreitende Verbreitung von Smartphones beitragen, mit denen zukünftig Umweltbelastungen und die Aktivitäten der Menschen in großem Stil gemessen werden können. Dies könnte helfen, bei Lärm- und Luftschadstoffen die teilweise nicht der realen Belastungssituation entsprechenden Daten zu verbessern. Langfristig könnte es damit leichter werden, die Infrastruktur und die Rahmenbedingungen, wie z. B. die Kosten im Verkehr, so zu gestalten, dass die Umweltbelastungen der Menschen sinken. / Background and objectives Besides their big benefits, transport activities also cause negative effects for the society including traffic congestion, accidents and environmental pollution. From the perspective of social justice the question arises whether the level of environmental impacts is unequally distributed between different groups of the population. In Germany this question is primarily answered by health science literature. In relatively small samples people were asked about their socio-economic situation and the level of exposure of pollutants was determined at their places of residence. In doing so, it was possible to prove that people of a lower socio-economic status suffer from levels of air pollution and noise above average. However, extensive environmental data and statistics concerning the whole population of a wider study area were hardly involved. Hence, the present dissertation examines how the burden of traffic related noise and air pollution is distributed between socio-economic groups. In addition to the absolute exposure, health impacts are taken into account. Spatial statistical reference units within the selected research area of Berlin are used in order to consider even small and local differences. However, this descriptive analysis does not involve the normative assessment of whether an unequal distribution should be classified as “unfair” from the perspective of society and science. Valuation of environmental effects For the analysis of the socio-spatial distribution of noise and air pollutants, reasonable and easily manageable indicators are necessary in order to aggregate the absolute environmental levels of exposure spatially as well as for socio-economic groups. For this purpose, cost factors are developed according to the concept of external costs. Additionally to the analysis of the socio-spatial distribution, this procedure allows the depiction of the economic consequences of environmental impacts. External costs value the environmental impacts which are not included in the decision making process of users for their trips. Instead, originally uninvolved third parties are affected by those impacts. Regarding road traffic, railway as well as aircraft noise the relevant health effects are high blood pressure and cardiovascular diseases including infarction and nuisances. Concerning air pollution a method is developed which allows the valuation of respiratory and cardiovascular diseases caused by nitrogen oxide and particulate matter based on the concentration of air pollutants in the outside air. The relation between the dose and its response, which describe the risk increase of environmental effects, are taken from the literature and form the basis of the valuation. The treatment costs of diseases, the costs of employment losses as well as the costs of life years lost are additionally included in the cost factors. The cost factors per person and year vary according to the level of exposition. Methodology After the development of exposure based cost factors every registered resident of Berlin is matched as precisely as possible with the noise and air exposure at the place of residence as well as with socio-economic data. All data is taken from official sources, but have not been merged together before. 1. Noise exposure is stated in the strategic noise map, which includes the modelled noise level of all residential buildings in Berlin differentiated by LDEN for road, railway, aircraft as well as total noise. Limiting the sources of noise to the main roads results in inaccuracies in regards to the dominating road traffic noise. A lot of inhabitants which live along secondary roads are therefore only exposed to very low noise levels depending on the underlying model. Hence, the underestimation of the number of exposed people is expected. In order to deal with this methodological issue, the underestimation is quantified by the detailed strategic noise map of Dresden and an exemplary complete mapping of one district which considers the whole road network as a noise source. Based on this, a sensitivity analysis for Berlin is implemented, which assumes a minimum exposure to road traffic noise throughout the whole city. 2. Data on air pollutants exists as modelled exposure to nitrogen oxide and particulate matter. It is available as a raster map of the urban background exposure as well as a network map of the additional traffic-related exposure along the arterial roads. During the data preparation road segments are matched with the specific exposure. 3. Within the official statistics two indicators describing the socio-economic composition of the population are available on the level of road segments. The first one is the proportion of people receiving social welfare benefits (SGB-II) and the second one is the proportion of people with migration background. On average 120 inhabitants live in one of those road segments. The preparation of the data focuses on merging the environmental and social data on the level of road segments. The external costs are calculated using the number of people exposed to traffic related noise and air pollutants as well as the cost factors. Results When initially concentrating on the environmental pollution, an unequal distribution appears. According to the strategic noise map about 30 % of the population is exposed to noise levels LDEN > 55 dB. A small proportion suffers from high exposures. Multiplying the number of those people with the corresponding cost factors, the total noise exposure results in about 130 million Euro per year. Road traffic noise causes the biggest share of cost followed by aircraft noise. Correspondingly the highest noise pollution occurs in the area of the airport Berlin-Tegel (TXL) and in a wide corridor along the Berlin circular railway called “Ringbahn”. All inhabitants of Berlin suffer from air pollution, albeit to different degrees. In regards to particulate matter about 142,000 people and respectively 81,000 people regarding nitrogen oxide are exposed to levels above the legal threshold values. The costs for society arising hereby accumulate to 1.9 billion Euro per year. While finding the highest levels of exposure close to the city center, the pressure falls with distance to the center. Examining the external costs of air pollution, road segments with a higher proportion of people with migration background are by the factor of 2.8 considerably more affected than road segments with a lower rate of migration. A medium correlation occurs between the rate of migration and a high exposure. Concerning road traffic noise the factor between low and high rates of migration background is 3.4 (factor 1.9 for the rate of social welfare benefits respectively). There is a low correlation between the rate of migration and the level of exposure. The strategic noise map for road traffic noise includes only the exposure along the main roads. The quantification of the underestimation shows that the number of people exposed to noise above LDEN > 55 dB is about 52 % higher than reported in the strategic noise map of Berlin. The highest underestimations occur within the range of 55 < LDEN < 65 dB. The different level of exposure between high and low rates of migration background and of social welfare recipients remains when assuming road traffic noise exposure for all buildings in Berlin within the sensitivity analysis. Beyond the status quo analysis, the data allows an evaluation over time. Comparing the strategic noise maps from 2007 and 2012, reductions in the noise exposure can be determined subject to methodological limitations. Measures of the noise action planning for instance were intensively implemented in road segments with higher shares of people with migration background as well as recipients of social welfare. However, an effect of these measures on the distribution of noise exposure according to migration and social welfare rates cannot be proven. The highest potential for noise reductions lies in the relocation of air traffic from TXL to the airport Berlin Brandenburg (BER). While strongly reducing the number of exposed people in Berlin, the number of exposed people in the state of Brandenburg will only rise to a small extent. Overall the number of people suffering from aircraft noise with LDEN > 55 dB will drop from 256,000 to 38,000. Because of the structurally diverging density and composition of the population surrounding the airport BER, almost only areas with currently low migration and social welfare rates will be exposed after the beginning of operation at the airport. Conclusions and further research The presented unequal distribution of noise and air pollution is likely to mark the lower threshold of the real situation. A reason is among other aspects the social distribution within a complex of buildings where for example the structure of rear buildings is ignored. Furthermore, there is evidence that further discrimination such as poor accessibility or bioclimatic impacts additionally reinforces the unequal distribution. By means of the methodological approach and the available data, it is not possible to analyze the initial causes of the current structure. Research concerning external costs reveals that rents are lower for apartments with higher noise exposure. Lower rents in turn are likely to attract people with low incomes. For this reason, even when reducing the environmental pollution, the unequal distribution would persist. Hence, the unequal distribution gives cause to reduce the exposure to noise and air pollutants as follows: 1. The increase of environmental pollution for people who belong to a socially disadvantaged population group should be prevented. The conducted comprehensive analysis can be used as a basis of assessment. 2. The current level of exposure must be reduced in absolute terms. Only in doing so, more people get the chance to live in an environment which benefits their health. 3. When prioritizing measures the socially disadvantaged population groups should be considered among other factors. Improving the methodological approach and the transfer to other study areas requires the availability of data. On the one hand, data about the socio-economic structure for small reference units needs to be existent. On the other hand, the environmental data needs to mirror the real levels of exposure and its structure must be suitable for further processing. The evaluation of socio-economic data gives room for further research with regard to its suitability for analyzing distributions within the social context. Besides trying to find the causes of the unequal distribution, the role of the polluters as well as the possibility to create a balance between the polluters and the exposed individuals should be considered. From a methodological perspective for instance the increasing use of smartphones can contribute to the measurement of environmental exposures and human activities on a larger scale. This could improve the data quality of noise and air pollutants, which currently only partly meets the real levels of exposure. In the long term it could be easier to shape infrastructures and general conditions such as the costs of transport in a way that the environmental impacts of people is reduced.
4

Sozialräumliche Verteilung von verkehrsbedingtem Lärm und Luftschadstoffen am Beispiel von Berlin

Becker, Thilo 19 May 2016 (has links)
Hintergrund und Zielstellung Verkehr verursacht, neben seinem großen Nutzen, auch negative Effekte auf die Gesellschaft. Dazu zählen Stau, Unfälle und Umweltbelastungen. Aus Perspektive der sozialen Gerechtigkeit stellt sich die Frage, ob das Niveau der Umweltbelastung, dem Bevölkerungsgruppen ausgesetzt sind, ungleich verteilt ist. Bisher wurde dieser Frage in Deutschland primär aus Perspektive der Gesundheitswissenschaften nachgegangen. Dabei wurden Personen in eher kleinen Stichproben zu ihrer sozio-ökonomischen Situation befragt und die individuelle Belastung durch Schadstoffe an ihrem Wohnort ermittelt. Auf diese Weise konnten bei Luftschadstoffen und Lärm überdurchschnittliche Belastungen von Menschen mit niedrigem sozio-ökonomischen Status nachgewiesen werden. Flächendeckend vorliegende Umweltdaten und Statistiken zu der gesamten Bevölkerung eines großen Untersuchungsgebietes wurden dabei allerdings kaum einbezogen. Deshalb wird in der vorliegenden Dissertation untersucht, wie die Belastung durch verkehrsbedingte Lärm- und Luftschadstoffbelastungen zwischen sozio-ökonomischen Gruppen der Bevölkerung verteilt ist. Dabei werden neben der absoluten Belastung auch die gesundheitlichen Auswirkungen berücksichtigt. Im gewählten Untersuchungsgebiet Berlin werden dafür geeignete räumlich-statistische Bezugseinheiten verwendet, um kleinräumige Belastungsunterschiede flächendeckend zu berücksichtigen. Die normative Bewertung, nach welchen Kriterien Ungleichverteilungen aus gesellschaftlicher und wissenschaftlicher Sicht als „ungerecht“ einzustufen sind, wird bei der deskriptiven Analyse nicht dargestellt. Bewertung der Umwelteffekte Für die Analyse der sozialräumlichen Verteilung von Lärm und Luftschadstoffen ist es sinnvoll, einfach handhabbare Indikatoren zu entwickeln, mit denen die absolute Umweltbelastung zum einen räumlich und zum anderen für sozio-ökonomische Gruppen aggregierbar ist. Dafür werden, entsprechend dem Konzept der externen Kosten, Kostensätze entwickelt. Somit kann zusätzlich zur Analyse der sozialräumlichen Verteilung auch die ökonomische Tragweite der Umweltbelastungen verdeutlicht werden. Mit den externen Kosten werden die Umwelteffekte bewertet, die von den Verkehrsteilnehmern bei ihrer Entscheidung über konkrete Fahrten nicht berücksichtigt werden. Stattdessen sind von den Effekten unbeteiligte Dritte betroffen. Bei Straßen-, Schienen und Fluglärm werden die Gesundheitswirkungen Bluthochdruck, Herz-Kreislauf-Erkrankungen einschließlich Herzinfarkt sowie Belästigungen betrachtet. Bei den Luftschadstoffen wird eine Methode entwickelt, mit der, basierend auf der Luftschadstoffkonzentration in der Außenluft, die durch Stickoxid und Feinstaub verursachten Atemwegs- und Herz- Kreislauf-Erkrankungen betrachtet werden. Grundlage der Bewertung sind jeweils Expositions-Wirkungs-Beziehungen aus der Literatur, die die Risikoerhöhung durch die Umweltwirkungen beschreiben. Außerdem fließen die Behandlungskosten der Krankheiten, die Kosten verlorener Erwerbstätigkeit und die Kosten verlorener Lebensjahre in die Bestimmung der Kostensätze ein. Die Kostensätze je Belastetem und Jahr variieren nach Expositionsniveau. Methodisches Vorgehen Nach der Entwicklung von immissionsbasierten Kostensätzen werden jedem gemeldeten Bewohner in Berlin möglichst exakt die Lärm- und Luftschadstoffbelastung am Wohnstandort sowie sozio-ökonomische Daten zugeordnet. Alle Daten liegen in amtlichen Quellen vor, sind aber bisher nicht zusammengeführt worden. 1. Für Lärm wird die Strategische Lärmkarte verwendet, die in Berlin für alle Wohngebäude die modellierte Lärmbelastung mit dem Lärmpegel LDEN für Straßen-, Schienen-, Flug- und Gesamtlärm enthält. Die Beschränkung auf Hauptverkehrsstraßen als Lärmquelle führt zu Ungenauigkeiten beim dominierenden Straßenlärm. Viele Bewohner, die im Bereich des Straßennebennetzes leben, sind modellbedingt nur sehr niedrigen Lärmpegeln ausgesetzt. Hier ist von einer Unterschätzung der Belastetenzahlen auszugehen. Um diesem methodischen Effekt Rechnung zu tragen, erfolgt eine Quantifizierung der Unterschätzung anhand der detaillierteren Dresdner Strategischen Lärmkarte und einer exemplarischen Vollkartierung eines Stadtteils mit dem Gesamtnetz als Lärmquelle. Darauf aufbauend wird für Berlin eine Sensitivitätsanalyse durchgeführt, bei der Mindestbelastungen durch Straßenlärm in der gesamten Stadt angenommen werden. 2. Bei Luftschadstoffen liegen modellierte Immissionen von Stickstoffdioxid und Feinstaub in Form einer Rasterkarte für die städtische Hintergrundbelastung und als Netzkarte für die Zusatzbelastung durch Verkehr entlang des Hauptstraßennetzes vor. Im Rahmen der Datenaufbereitung wird Straßenabschnitten die jeweilige Belastung zugeordnet. 3. Zur Beschreibung der sozio-ökonomischen Zusammensetzung der Bevölkerung liegen auf der Ebene von Straßenabschnitten Quoten der SGB-II-Empfänger („Hartz IV“-Sozialleistungen) und der Einwohner mit Migrationshintergrund (Ausländer und deren Nachkommen) in der amtlichen Statistik vor. In diesen Straßenabschnitten leben durchschnittlich 120 Einwohner. Der zentrale Schritt der Datenaufbereitung ist die Zusammenführung der Umwelt- und Sozialdaten auf der Ebene der Straßenabschnitte. Anhand der Anzahl der Luftschadstoff und Lärmbelasteten und mit Hilfe der Kostensätze werden die externen Kosten berechnet. Ergebnisse Wird zunächst die Umweltbelastung betrachtet, zeigt sich die ungleichmäßige Verteilung. So sind knapp 30 % der Bevölkerung nach der Strategischen Lärmkarte mit dem Lärmpegel LDEN > 55 dB belastet. Geringe Bevölkerungsanteile sind auch sehr hohen Belastungen ausgesetzt. Wird die Anzahl der Belasteten mit den Kostensätzen der externen Kosten multipliziert, entspricht diese Lärmbelastung knapp 130 Mio. Euro pro Jahr. Den größten Anteil verursacht Straßenlärm, gefolgt von Fluglärm. Entsprechend hoch sind die Belastungen durch Verkehrslärm im Bereich des Flughafens Berlin-Tegel (TXL) sowie am äußeren Rand und innerhalb der Berliner Ringbahn. Durch Luftschadstoffe sind alle Menschen in Berlin belastet, allerdings in unterschiedlichem Ausmaß. Belastungen oberhalb gesetzlicher Schwellenwerte sind in Bezug auf Feinstaub rund 142.000 Menschen und in Bezug auf Stickoxide rund 81.000 Menschen ausgesetzt. Dies entspricht externen Kosten für die Gesellschaft in Höhe von 1,9 Mrd. Euro pro Jahr. Während im Stadtzentrum die Belastung am höchsten ist, fällt sie zum Stadtrand hin tendenziell ab. Werden die externen Kosten durch Luftschadstoffe betrachtet, sind Straßenabschnitte mit hoher Migrationsquote um Faktor 2,8 stärker belastet als Straßenabschnitte mit niedriger Migrationsquote. Es tritt eine mittlere Korrelation zwischen hoher Migrationsquote und hoher Belastung auf. Bei Straßenlärm liegt der Faktor zwischen niedriger und hoher Migrationsquote bei 3,4 (Faktor 1,9 bei SGB-II-Quote). Es besteht bei Lärm eine geringe Korrelation zwischen Migrationsquote und Belastung. Die Strategische Lärmkarte für Straßenlärm beinhaltet nur die Belastung entlang des Hauptstraßennetzes. Die Quantifizierung der Unterschätzung zeigt, dass die Anzahl der Lärmbelasteten mit LDEN > 55 dB etwa 52 % höher ist als in der Berliner Strategischen Lärmkarte angegeben. Die stärksten Unterschätzungen treten im Intervall 55 < LDEN < 65 dB auf. Werden in der Sensitivitätsanalyse Straßenlärmbelastungen für alle Gebäude in Berlin angenommen, bleibt der Belastungsunterschied zwischen hohen und niedrigen Migrations- und SGB-II-Quoten bestehen. Über die Status-quo-Analyse hinaus ermöglichen die Daten einzelne Auswertungen zu Entwicklungen im Zeitverlauf. Werden die Strategischen Lärmkarten 2007 und 2012 miteinander verglichen, können, vorbehaltlich methodischer Einschränkungen, Minderungen bei der Lärmbelastung festgestellt werden. So fanden beispielsweise die Maßnahmen der Lärmaktionsplanung verstärkt in Straßenabschnitten mit hohen Migrations- und SGB-II-Quoten statt. Allerdings kann ein Effekt der Maßnahmen auf die Verteilung der Lärmbelastung nach Migrations- und SGB-II-Quoten nicht festgestellt werden. Das größte Potential zur Lärmminderung in Berlin hat die Verlegung des Flugverkehrs von TXL zum Flughafen Berlin Brandenburg (BER). Während dann die Zahl der Belasteten in Berlin sehr stark sinken wird, wird sie im Land Brandenburg nur leicht ansteigen. Insgesamt wird die Summe aller Fluglärmbelasteten LDEN > 55 dB von 256.000 auf 38.000 sinken. Bedingt durch die strukturell unterschiedliche Dichte und Zusammensetzung der Bevölkerung im Umfeld vom Flughafen BER werden nach Inbetriebnahme von BER fast nur Gebiete mit momentan niedrigen Migrations- und SGB-II-Quoten belastet sein. Schlussfolgerungen sowie weiterer Forschungsbedarf Die dargestellte Ungleichverteilung der Lärm- und Luftschadstoffbelastung markiert vermutlich eher die Untergrenze der realen Situation, da unter anderem die soziale Verteilung innerhalb von Gebäudekomplexen, z. B. bei der Hinterhausstruktur, unberücksichtigt bleibt. Außerdem gibt es Hinweise, dass weitere Benachteiligungen wie schlechte Erreichbarkeit oder bioklimatische Belastungen die Ungleichverteilung zusätzlich verstärken. Anhand der Methodik und der vorliegenden Daten kann nicht analysiert werden, durch welche Ursachen sich die heutige Struktur herausgebildet hat. Aus Untersuchungen zu externen Kosten ist bekannt, dass in Wohnungen mit höherer Lärmbelastung nur geringere Mieten gefordert werden. Diese geringeren Mieten können für Menschen mit niedrigem Einkommensniveau anziehend sein. Damit würde es auch bei einer Minderung der Umweltbelastung weiterhin Ungleichverteilungen geben. Diese Ungleichverteilung sollte ein Anlass sein, die gesundheitsrelevanten Lärm- und Luftschadstoffbelastungen wie folgt zu mindern: 1. Eine Zunahme der Umweltbelastung von sozio-ökonomisch benachteiligten Bevölkerungsgruppen sollte vermieden werden. Als Bewertungsgrundlage kann die durchgeführte flächendeckende Analyse dienen. 2. Das bereits bestehende Belastungsniveau sollte insgesamt gesenkt werden. Nur so erhalten mehr Menschen die Chance, in einer ihrer Gesundheit förderlichen Umgebung zu leben. 3. Die sozial benachteiligten Bevölkerungsgruppen sollten bei der Maßnahmenpriorisierung als zusätzlicher Faktor berücksichtigt werden. Notwendig für eine Fortschreibung des Analyseansatzes und die Übertragung auf andere Untersuchungsgebiete ist die Datenverfügbarkeit. Einerseits müssen Daten zur sozio-ökonomischen Struktur auf der Ebene von möglichst kleinräumigen Bezugseinheiten vorliegen. Andererseits müssen die Umweltdaten flächendeckend die reale Belastung widerspiegeln und von der Datenstruktur her für eine Weiterverarbeitung geeignet sein. Raum für weitere Forschungen bietet die Bewertung der sozio-ökonomischen Daten hinsichtlich ihrer Eignung bei Analysen der sozialräumlichen Verteilung. Neben der Forschung nach Gründen der Ungleichverteilung sollte auch die Rolle der Verursacher und eine mögliche Bilanz zwischen Verursachern und Belasteten betrachtet werden. Methodisch kann dazu u. a. die fortschreitende Verbreitung von Smartphones beitragen, mit denen zukünftig Umweltbelastungen und die Aktivitäten der Menschen in großem Stil gemessen werden können. Dies könnte helfen, bei Lärm- und Luftschadstoffen die teilweise nicht der realen Belastungssituation entsprechenden Daten zu verbessern. Langfristig könnte es damit leichter werden, die Infrastruktur und die Rahmenbedingungen, wie z. B. die Kosten im Verkehr, so zu gestalten, dass die Umweltbelastungen der Menschen sinken. / Background and objectives Besides their big benefits, transport activities also cause negative effects for the society including traffic congestion, accidents and environmental pollution. From the perspective of social justice the question arises whether the level of environmental impacts is unequally distributed between different groups of the population. In Germany this question is primarily answered by health science literature. In relatively small samples people were asked about their socio-economic situation and the level of exposure of pollutants was determined at their places of residence. In doing so, it was possible to prove that people of a lower socio-economic status suffer from levels of air pollution and noise above average. However, extensive environmental data and statistics concerning the whole population of a wider study area were hardly involved. Hence, the present dissertation examines how the burden of traffic related noise and air pollution is distributed between socio-economic groups. In addition to the absolute exposure, health impacts are taken into account. Spatial statistical reference units within the selected research area of Berlin are used in order to consider even small and local differences. However, this descriptive analysis does not involve the normative assessment of whether an unequal distribution should be classified as “unfair” from the perspective of society and science. Valuation of environmental effects For the analysis of the socio-spatial distribution of noise and air pollutants, reasonable and easily manageable indicators are necessary in order to aggregate the absolute environmental levels of exposure spatially as well as for socio-economic groups. For this purpose, cost factors are developed according to the concept of external costs. Additionally to the analysis of the socio-spatial distribution, this procedure allows the depiction of the economic consequences of environmental impacts. External costs value the environmental impacts which are not included in the decision making process of users for their trips. Instead, originally uninvolved third parties are affected by those impacts. Regarding road traffic, railway as well as aircraft noise the relevant health effects are high blood pressure and cardiovascular diseases including infarction and nuisances. Concerning air pollution a method is developed which allows the valuation of respiratory and cardiovascular diseases caused by nitrogen oxide and particulate matter based on the concentration of air pollutants in the outside air. The relation between the dose and its response, which describe the risk increase of environmental effects, are taken from the literature and form the basis of the valuation. The treatment costs of diseases, the costs of employment losses as well as the costs of life years lost are additionally included in the cost factors. The cost factors per person and year vary according to the level of exposition. Methodology After the development of exposure based cost factors every registered resident of Berlin is matched as precisely as possible with the noise and air exposure at the place of residence as well as with socio-economic data. All data is taken from official sources, but have not been merged together before. 1. Noise exposure is stated in the strategic noise map, which includes the modelled noise level of all residential buildings in Berlin differentiated by LDEN for road, railway, aircraft as well as total noise. Limiting the sources of noise to the main roads results in inaccuracies in regards to the dominating road traffic noise. A lot of inhabitants which live along secondary roads are therefore only exposed to very low noise levels depending on the underlying model. Hence, the underestimation of the number of exposed people is expected. In order to deal with this methodological issue, the underestimation is quantified by the detailed strategic noise map of Dresden and an exemplary complete mapping of one district which considers the whole road network as a noise source. Based on this, a sensitivity analysis for Berlin is implemented, which assumes a minimum exposure to road traffic noise throughout the whole city. 2. Data on air pollutants exists as modelled exposure to nitrogen oxide and particulate matter. It is available as a raster map of the urban background exposure as well as a network map of the additional traffic-related exposure along the arterial roads. During the data preparation road segments are matched with the specific exposure. 3. Within the official statistics two indicators describing the socio-economic composition of the population are available on the level of road segments. The first one is the proportion of people receiving social welfare benefits (SGB-II) and the second one is the proportion of people with migration background. On average 120 inhabitants live in one of those road segments. The preparation of the data focuses on merging the environmental and social data on the level of road segments. The external costs are calculated using the number of people exposed to traffic related noise and air pollutants as well as the cost factors. Results When initially concentrating on the environmental pollution, an unequal distribution appears. According to the strategic noise map about 30 % of the population is exposed to noise levels LDEN > 55 dB. A small proportion suffers from high exposures. Multiplying the number of those people with the corresponding cost factors, the total noise exposure results in about 130 million Euro per year. Road traffic noise causes the biggest share of cost followed by aircraft noise. Correspondingly the highest noise pollution occurs in the area of the airport Berlin-Tegel (TXL) and in a wide corridor along the Berlin circular railway called “Ringbahn”. All inhabitants of Berlin suffer from air pollution, albeit to different degrees. In regards to particulate matter about 142,000 people and respectively 81,000 people regarding nitrogen oxide are exposed to levels above the legal threshold values. The costs for society arising hereby accumulate to 1.9 billion Euro per year. While finding the highest levels of exposure close to the city center, the pressure falls with distance to the center. Examining the external costs of air pollution, road segments with a higher proportion of people with migration background are by the factor of 2.8 considerably more affected than road segments with a lower rate of migration. A medium correlation occurs between the rate of migration and a high exposure. Concerning road traffic noise the factor between low and high rates of migration background is 3.4 (factor 1.9 for the rate of social welfare benefits respectively). There is a low correlation between the rate of migration and the level of exposure. The strategic noise map for road traffic noise includes only the exposure along the main roads. The quantification of the underestimation shows that the number of people exposed to noise above LDEN > 55 dB is about 52 % higher than reported in the strategic noise map of Berlin. The highest underestimations occur within the range of 55 < LDEN < 65 dB. The different level of exposure between high and low rates of migration background and of social welfare recipients remains when assuming road traffic noise exposure for all buildings in Berlin within the sensitivity analysis. Beyond the status quo analysis, the data allows an evaluation over time. Comparing the strategic noise maps from 2007 and 2012, reductions in the noise exposure can be determined subject to methodological limitations. Measures of the noise action planning for instance were intensively implemented in road segments with higher shares of people with migration background as well as recipients of social welfare. However, an effect of these measures on the distribution of noise exposure according to migration and social welfare rates cannot be proven. The highest potential for noise reductions lies in the relocation of air traffic from TXL to the airport Berlin Brandenburg (BER). While strongly reducing the number of exposed people in Berlin, the number of exposed people in the state of Brandenburg will only rise to a small extent. Overall the number of people suffering from aircraft noise with LDEN > 55 dB will drop from 256,000 to 38,000. Because of the structurally diverging density and composition of the population surrounding the airport BER, almost only areas with currently low migration and social welfare rates will be exposed after the beginning of operation at the airport. Conclusions and further research The presented unequal distribution of noise and air pollution is likely to mark the lower threshold of the real situation. A reason is among other aspects the social distribution within a complex of buildings where for example the structure of rear buildings is ignored. Furthermore, there is evidence that further discrimination such as poor accessibility or bioclimatic impacts additionally reinforces the unequal distribution. By means of the methodological approach and the available data, it is not possible to analyze the initial causes of the current structure. Research concerning external costs reveals that rents are lower for apartments with higher noise exposure. Lower rents in turn are likely to attract people with low incomes. For this reason, even when reducing the environmental pollution, the unequal distribution would persist. Hence, the unequal distribution gives cause to reduce the exposure to noise and air pollutants as follows: 1. The increase of environmental pollution for people who belong to a socially disadvantaged population group should be prevented. The conducted comprehensive analysis can be used as a basis of assessment. 2. The current level of exposure must be reduced in absolute terms. Only in doing so, more people get the chance to live in an environment which benefits their health. 3. When prioritizing measures the socially disadvantaged population groups should be considered among other factors. Improving the methodological approach and the transfer to other study areas requires the availability of data. On the one hand, data about the socio-economic structure for small reference units needs to be existent. On the other hand, the environmental data needs to mirror the real levels of exposure and its structure must be suitable for further processing. The evaluation of socio-economic data gives room for further research with regard to its suitability for analyzing distributions within the social context. Besides trying to find the causes of the unequal distribution, the role of the polluters as well as the possibility to create a balance between the polluters and the exposed individuals should be considered. From a methodological perspective for instance the increasing use of smartphones can contribute to the measurement of environmental exposures and human activities on a larger scale. This could improve the data quality of noise and air pollutants, which currently only partly meets the real levels of exposure. In the long term it could be easier to shape infrastructures and general conditions such as the costs of transport in a way that the environmental impacts of people is reduced.
5

Verkehrsökologische Schriftenreihe

12 April 2016 (has links)
Ziel der „Verkehrsökologischen Schriftenreihe“ ist es, die Forschungsergebnisse der Professur für Verkehrsökologie (TU Dresden) und ausgewählte studentische Arbeiten einer breiteren Öffentlichkeit zugänglich zu machen. Damit möchten wir einerseits die fachliche Diskussion zu Problemstellungen einer nachhaltigen Mobilitätsentwicklung und anderseits den offenen Zugang zu Wissen und Informationen unterstützen. Thematisch greift die Schriftenreihe dabei die folgenden Forschungsschwerpunkte der Professur auf: a) Nachhaltige Verkehrsentwicklung: Auswirkungen, Verfahren, Konsequenzen b) Klimaschutz, Energie und CO2 im Verkehr c) Luftreinhaltung & Lärm, Emissionsfaktoren und reale Fahrmuster d) Externe Kosten und Nutzen des Verkehrs, Kostenwahrheit und Internalisierung e) Rad- und Fußverkehr f) Umweltbildung, Monitoring und Evaluation g) Soziale Exklusion und Umweltgerechtigkeit im Verkehrsbereich
6

Verkehrsökologische Schriftenreihe

12 April 2016 (has links)
Ziel der „Verkehrsökologischen Schriftenreihe“ ist es, die Forschungsergebnisse der Professur für Verkehrsökologie (TU Dresden) und ausgewählte studentische Arbeiten einer breiteren Öffentlichkeit zugänglich zu machen. Damit möchten wir einerseits die fachliche Diskussion zu Problemstellungen einer nachhaltigen Mobilitätsentwicklung und anderseits den offenen Zugang zu Wissen und Informationen unterstützen. Thematisch greift die Schriftenreihe dabei die folgenden Forschungsschwerpunkte der Professur auf: a) Nachhaltige Verkehrsentwicklung: Auswirkungen, Verfahren, Konsequenzen b) Klimaschutz, Energie und CO2 im Verkehr c) Luftreinhaltung & Lärm, Emissionsfaktoren und reale Fahrmuster d) Externe Kosten und Nutzen des Verkehrs, Kostenwahrheit und Internalisierung e) Rad- und Fußverkehr f) Umweltbildung, Monitoring und Evaluation g) Soziale Exklusion und Umweltgerechtigkeit im Verkehrsbereich

Page generated in 0.0591 seconds