• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 12
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Low cost synthesis of cathode and anode materials for lithium-ion batteries

Cheng, Lifeng 04 1900 (has links)
Dans cette thèse, nous démontrons des travaux sur la synthèse à faible coût des matériaux de cathode et l'anode pour les piles lithium-ion. Pour les cathodes, nous avons utilisé des précurseurs à faible coût pour préparer LiFePO4 et LiFe0.3Mn0.7PO4 en utilisant une méthode hydrothermale. Tout d'abord, des matériaux composites (LiFePO4/C) ont été synthétisés à partir d'un précurseur de Fe2O3 par une procédé hydrothermique pour faire LiFePO4(OH) dans une première étape suivie d'une calcination rapide pour le revêtement de carbone. Deuxièmement, LiFePO4 avec une bonne cristallinité et une grande pureté a été synthétisé en une seule étape, avec Fe2O3 par voie hydrothermale. Troisièmement, LiFe0.3Mn0.7PO4 a été préparé en utilisant Fe2O3 et MnO comme des précurseurs de bas coûts au sein d'une méthode hydrothermale synthétique. Pour les matériaux d'anode, nous avons nos efforts concentré sur un matériau d'anode à faible coût α-Fe2O3 avec deux types de synthèse hydrothermales, une a base de micro-ondes (MAH) l’autre plus conventionnelles (CH). La nouveauté de cette thèse est que pour la première fois le LiFePO4 a été préparé par une méthode hydrothermale en utilisant un précurseur Fe3+ (Fe2O3). Le Fe2O3 est un précurseur à faible coût et en combinant ses coûts avec les conditions de synthèse à basse température nous avons réalisé une réduction considérable des coûts de production pour le LiFePO4, menant ainsi à une meilleure commercialisation du LiFePO4 comme matériaux de cathode dans les piles lithium-ion. Par cette méthode de préparation, le LiFePO4/C procure une capacité de décharge et une stabilité de cycle accrue par rapport une synthétisation par la méthode à l'état solide pour les mêmes précurseurs Les résultats sont résumés dans deux articles qui ont été récemment soumis dans des revues scientifiques. / In this thesis, low cost syntheses of cathode and anode materials for lithium ion batteries will be presented. For cathode materials, low cost precursors were used to prepare LiFePO4 and LiFe0.3Mn0.7PO4 using low temperature hydrothermal method. Initially, a LiFePO4/C composite material was synthesized from a Fe2O3 precursor using a hydrothermal method to prepare LiFePO4(OH) in a first step followed by a fast calcination and carbon coating. Secondly, LiFePO4 with good crystallinity and high purity was synthesized, in one step, with nanometric sized Fe2O3 by a hydrothermal method. Thirdly, LiFe0.3Mn0.7PO4 was prepared using low cost Fe2O3 and MnO as precursors within a hydrothermal synthetic method. For anode materials, a low cost anode material α-Fe2O3 was prepared using two hydrothermal synthetic methods, microwave assisted (MAH) and conventional hydrothermal (CH). The novelty of the thesis is for the first time LiFePO4 has been prepared using a low cost Fe3+ precursor (Fe2O3) by a hydrothermal method. Low cost precursors and low temperature synthesis conditions will greatly reduce the synthetic cost of LiFePO4, leading to greater commercialization of LiFePO4 as a cathode materials for lithium-ion batteries. The as-prepared LiFePO4/C product provided enhanced discharge capacity and cycling stability compared to that synthesized using a solid state method with the same precursors. The results were summarized within two articles that were recently submitted to peer reviewed scientific journals.
42

Reduction of ferric and ferrous compounds in the presence of graphite using mechanical alloying

Moloto, Ledwaba Harry 05 1900 (has links)
M.Tech. (Department of Chemistry, Faculty of Applied Sciences), Vaal University of Technology / Many oxidic iron compounds—iron oxides; oxy-hydroxides and hydroxides—not only play an important role in a variety of disciplines but also serve as a model system of reduction and catalytic reactions. There are more than 16 identifiable oxidic iron compounds. The reduction of these compounds has been investigated for centuries. Despite this, the reduction behavior of the oxides is not fully understood as yet. To date the reduction mechanism is still plagued with uncertainties and conflicting theories, partly due to the complex nature of these oxides and intermediates formed during the reduction. Thermodynamically, the reduction of iron oxide occurs in steps. For example, during the reduction of hematite (a-Fe2O3) magnetite (Fe3O4) is first formed followed by non-stoichiometric wüstite (Fe1-yO) and lastly metallic iron (a-Fe). The rate of transformation depends on the reduction conditions. Further, this reduction is accompanied by changes in the crystal structure. The reduction behavior of iron oxides using graphite under ball-milling conditions was investigated using Planetary mono mill (Fritsch Pulverisette 6), Mössbauer Spectroscopy (MS), X-ray Diffraction (XRD), Scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM). It was found that hematite transformed into magnetite, Wüstite and or cementite depending on the milling conditions. The study shows that by increasing the milling time, the rotational speed and / or the ball to powder ratio, the extent of the conversion of hematite to its reduction products increased. Further investigations are required for the elucidation of the reduction mechanism. The reaction og magnetite and graphite at different milling conditions lead to the formation of Fe2+ and Fe3+ species, the former increasing at the expense of Fe3O4. Fe3O4 completely disappeared after a BPR of 50:1 and beyond. The Fe2+ species was confirmed to be due to FeO using XRD analysis. HRSEM images Fe2O3 using scanning electron microscopy prior to and after milling at different times showed significant changes while the milling period was increased, HRSEM images showed that the once well defined hematite particles took ill-defined shapes and also became smaller in size, which was a results of the milling action that induced reaction between the two powders to form magnetite. EDX spectra at different milling times also confirmed formation of magnetite. EDX elemental analysis and quantification confirmed the elemental composition of starting material consisting mainly of iron. Similarly, HRSEM images of Fe3O4 using Scanning electron microscopy (SEM) prior to and after milling at different BPR showed significant changes when the milling period was increased. EDX spectra at different milling times also confirmed formation of partial FeO and EDX elemental analysis and quantification confirmed the elemental composition of starting material consisting mainly of iron than Fe2O3. TEM images of both Fe2O3 and Fe3O4 particles at different milling conditions displayed observable particle damages as a function of milling period.The once well - defined particles (Fe2O3 and Fe3O4 ) successively took ill – defined shapes, possibly accompanied by crystallite size reduction. MAS showed that the reactive milling of α- Fe2O3 and C resulted in reduction to Fe3O4 , FeO and or cementite depending on the milling conditions etc Time, milling speed and BPR variation which influenced the reduction. The study shows that by increasing the milling time, the rotational speed and / or the ball to powder ratio, the extent of the conversion of hematite to its reduction products increased. XRD study investigations even though were unable to detect spm species (Fe2+ and Fe3+ ) which has smaller crystallites below detection limits ,the variation in time showed an increment in the magnetite peaks accompanied by recession of hematite and graphite peaks as the milling time was increased which relates to the MAS observation.XRD also corroborated the data obtained from MAS that showed that the main constituent was magnetite and further evidence in support of the reduction of hematite to magnetite under reactive milling was obtained using XRD . Overall, the work demonstrated selective reduction of Fe2O3 to Fe3O4 and Fe3O4 to FeO by fine tuning the milling conditions. It is envisaged that the reduction of FeO to Fe and possible carburization to FexC could also be achieved.
43

Low cost synthesis of cathode and anode materials for lithium-ion batteries

Cheng, Lifeng 04 1900 (has links)
Dans cette thèse, nous démontrons des travaux sur la synthèse à faible coût des matériaux de cathode et l'anode pour les piles lithium-ion. Pour les cathodes, nous avons utilisé des précurseurs à faible coût pour préparer LiFePO4 et LiFe0.3Mn0.7PO4 en utilisant une méthode hydrothermale. Tout d'abord, des matériaux composites (LiFePO4/C) ont été synthétisés à partir d'un précurseur de Fe2O3 par une procédé hydrothermique pour faire LiFePO4(OH) dans une première étape suivie d'une calcination rapide pour le revêtement de carbone. Deuxièmement, LiFePO4 avec une bonne cristallinité et une grande pureté a été synthétisé en une seule étape, avec Fe2O3 par voie hydrothermale. Troisièmement, LiFe0.3Mn0.7PO4 a été préparé en utilisant Fe2O3 et MnO comme des précurseurs de bas coûts au sein d'une méthode hydrothermale synthétique. Pour les matériaux d'anode, nous avons nos efforts concentré sur un matériau d'anode à faible coût α-Fe2O3 avec deux types de synthèse hydrothermales, une a base de micro-ondes (MAH) l’autre plus conventionnelles (CH). La nouveauté de cette thèse est que pour la première fois le LiFePO4 a été préparé par une méthode hydrothermale en utilisant un précurseur Fe3+ (Fe2O3). Le Fe2O3 est un précurseur à faible coût et en combinant ses coûts avec les conditions de synthèse à basse température nous avons réalisé une réduction considérable des coûts de production pour le LiFePO4, menant ainsi à une meilleure commercialisation du LiFePO4 comme matériaux de cathode dans les piles lithium-ion. Par cette méthode de préparation, le LiFePO4/C procure une capacité de décharge et une stabilité de cycle accrue par rapport une synthétisation par la méthode à l'état solide pour les mêmes précurseurs Les résultats sont résumés dans deux articles qui ont été récemment soumis dans des revues scientifiques. / In this thesis, low cost syntheses of cathode and anode materials for lithium ion batteries will be presented. For cathode materials, low cost precursors were used to prepare LiFePO4 and LiFe0.3Mn0.7PO4 using low temperature hydrothermal method. Initially, a LiFePO4/C composite material was synthesized from a Fe2O3 precursor using a hydrothermal method to prepare LiFePO4(OH) in a first step followed by a fast calcination and carbon coating. Secondly, LiFePO4 with good crystallinity and high purity was synthesized, in one step, with nanometric sized Fe2O3 by a hydrothermal method. Thirdly, LiFe0.3Mn0.7PO4 was prepared using low cost Fe2O3 and MnO as precursors within a hydrothermal synthetic method. For anode materials, a low cost anode material α-Fe2O3 was prepared using two hydrothermal synthetic methods, microwave assisted (MAH) and conventional hydrothermal (CH). The novelty of the thesis is for the first time LiFePO4 has been prepared using a low cost Fe3+ precursor (Fe2O3) by a hydrothermal method. Low cost precursors and low temperature synthesis conditions will greatly reduce the synthetic cost of LiFePO4, leading to greater commercialization of LiFePO4 as a cathode materials for lithium-ion batteries. The as-prepared LiFePO4/C product provided enhanced discharge capacity and cycling stability compared to that synthesized using a solid state method with the same precursors. The results were summarized within two articles that were recently submitted to peer reviewed scientific journals.
44

Biogeochemical Defluoridation

Evans-Tokaryk, Kerry 09 June 2011 (has links)
Fluoride in drinking water can lead to a crippling disease called fluorosis. As there is no cure for fluorosis, prevention is the only means of controlling the disease and research into fluoride remediation is critical. This work begins by providing a new approach to assessing fluoride remediation strategies using a combination of groundwater chemistry, saturation indices, and multivariate statistics based on the results of a large groundwater survey performed in a fluoride-contaminated region of India. From the Indian groundwater study, it was noted that one technique recommended for defluoridation involved using hydrous ferric oxide (HFO) as a solid phase sorbent for fluoride. This prompted investigation of bacteriogenic iron oxides (BIOS), a biogenic form of HFO, as a means of approaching bioremediation of fluoride. Batch sorption experiments at ionic strengths ranging from 0.001 to 0.1 M KNO3 and time course kinetic studies with BIOS and synthetic HFO were conducted to ascertain total sorption capacities (ST), sorption constants (Ks), and orders of reaction (n), as well as forward (kf) and reverse (kr) rate constants. Microcosm titration experiments were also conducted with BIOS and HFO in natural spring water from a groundwater discharge zone to evaluate fluoride sorption under field conditions. This thesis contributes significant, new information regarding the interaction between fluoride and BIOS, advancing knowledge of fluoride remediation and covering new ground in the uncharted field of fluoride bioremediation.
45

Solvent dependent growth of one-dimensional crystalline ß-FeOOH nanorods

Chowdhury, Mahabubur Rahman January 2014 (has links)
Thesis submitted in fulfilment of the requirements for the degree DOCTOR TECHNOLOGIAE: ENGINEERING: CHEMICAL in the FACULTY OF ENGINEERING at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY 2014 / Several authors have reported on the use of alcohols – water /or mixed solvents to synthesise metal oxide nanoparticles. However, no systematic study has been carried out to evaluate the effect of mixed solvent on the particle characteristics, although considerable research has been reported, a gap still exists with regard to the effect of the alcohols as solvents on the growth kinetics of nanoparticles. To address these issues, four different alcohols, namely, methanol (MeOH), ethanol (EtOH), propanol (PrOH) and butanol (BuOH) were used as solvents in the synthesis of β-FeOOH particles. The effect of organic solvents on the growth kinetics of β-FeOOH nanorods has been evaluated for the first time in this study. Two-stage growth of akaganeite nanorods has been observed in BuOH and PrOH. The first growth stage follows a typical power law representing Ostwald ripening (OR) kinetic. The second stage was found to be asymptotic and obeyed oriented attachment (OA) kinetic. The proof of the OA kinetic also comes from the HRTEM images of the synthesised particles. Simultaneous occurrence of the two mechanisms was observed in the growth of the particles synthesised in EtOH and MeOH. The rate constants for OR kinetic, KOR, was found to be higher than the rate constant for OA kinetic, KOA, for different solvents used. Preamble The use of a mixed solvent is a new approach in the synthesis and processing of materials. Various researchers have stated that the surface tension of the solvent plays an important role in the formation of uniform nanorods. However, the effect of surface tension was not correlated with the particle growth, earlier, though the dielectric properties of the mixed solvents were only taken into account. Additionally, no quantitative or qualitative relationship was presented between surface tension and particle growth in the literature. In this work an attempt to correlate these two parameters (surface tension and particle growth) with the concentration of the precursor and temperature was made, resulting in an exponential relationship between KOR for the particle growth and surface tension of the alcohols. Furthermore, the relationship between surface tension and particle growth was validated by an independent study using statistically designed experiments to account for the influence of various process variables on the particle growth. The findings in this study obtained from both theoretical and experimental work provides an insight into the relationship between solvent surface tension and particle growth interactions, producing a new piece of information that will further promote our understanding of the formation mechanisms of β- FeOOH growth. The transformation temperature of akaganeite (β-FeOOH) nanorods to hematite (α-Fe2O3) particles was found to be solvent dependent. Thermogravimetric analysis and differential scanning calorimetry were performed to evaluate the effect of alcohol on the thermodynamic stability of the particles. Alcohol as solvent played a significant role in the dehydration property of the synthesised particles. The percentage mass loss of the particles at 300°C decreases linearly with increasing carbon number in the linear alkyl chain of the solvent. The effect of alcohol type on the particle morphology was found to be more pronounced at higher FeCl3 concentrations (>0.5M). Splitting of β-FeOOH nanorods was observed at FeCl3 concentration of 0.7M in BuOH. In PrOH, rectangular morphologies were obtained whereas nanoribbons resulted in surfactant-free conditions. It was found that the nature of anions (chloride vs. nitrate and sulphate) in the precursor salt also influenced the morphology.
46

Effect of preparation parameters of iron oxide nanoparticles on the fenton catalytic activity for the degradation of dye.

Matlhatse, Malatji 03 1900 (has links)
M. Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Water polluted by recalcitrant organics, such as methylene blue (MB), can be treated with the Fenton reaction. The Fenton reaction degrades the pollutants through catalytic oxidation. Unsupported iron oxide nanoparticles (IONPs) were used as catalysts in this study. Iron oxide nanoparticles were synthesised using a precipitation-oxidation method and effects of various preparation parameters on the shape, size and catalytic activity of the iron oxide nanoparticles were studied. Parameters investigated include preparation temperature, type and amount of precipitating agent. The precipitating agents used are sodium hydroxide, tetramethyl ammonium hydroxide (TMAOH), tetraethyl ammonium hydroxide (TEAOH) and ethylamine. The iron oxide nanoparticles were found to be spherical for most of the preparation conditions as determined by TEM. However, irregular flower-like shapes (hexagonal with rod extensions) were obtained when the amounts of the TMAOH and TEAOH bases were more than the stoichiometric amounts. The nature and amount of precipitating agent also influenced the degree of particle agglomeration and growth, with an increase in alkyl chains in the base giving lesser agglomeration. The preparation temperature did not influence the nanoparticles’ size when NaOH was used as a precipitating agent. In contrast, when an amine was used as a precipitation agent, caused a slight increase in the size of the nanoparticles. Different crystal phases like hematite, magnetite, maghemite and goethite-hematite mixture were identified in the X-ray diffractograms. UV-Vis spectroscopy showed that all the catalysts were red-shifted except for B3 sample, which was blue-shifted from the bulk materials. The highest catalytic activities were obtained when NaOH was used as a precipitation agent instead of amine since catalyst has shown to contain the traces amounts of the base used on the surface. The lower catalytic activities for the catalysts prepared using amines may be due to amines adsorbed on the surface and blocking the catalytic active sites. FTIR spectra showed the presence of trace amounts of ammine functional groups on the nanoparticles No correlation was found between the crystallite size and the Fenton catalytic activity of the catalyst. In the same vein, operational parameters such as the amount of H2O2 and temperatures did not show a direct effect on the Fenton catalytic efficiency. Kinetic studies show that the degradation of methylene blue followed the first-order models for all the catalysts prepared with NaOH. Overall, the study shows that different preparation parameters had an effect on the size, shape, phase and the catalytic performance of the synthesised IONPs.
47

Distribution of iron-titanium oxides in the vanadiferous main magnetite seam of the upper zone : Northern limb, Bushveld complex

Gwatinetsa, Demand January 2014 (has links)
The main magnetite seam of the Upper Zone of the Rustenburg Layered Suite (SACS, 1980) on the Bushveld Complex is known to host the world‘s largest vanadium bearing titaniferous iron ores. The vanadiferous titanomagnetites, contain vanadium in sufficient concentrations (1.2 - 2.2 per cent V₂O₅) to be considered as resources and vanadium has been mined historically by a number of companies among them Anglo-American, Highveld Steel and Vanadium and VanMag Resources as well as currently by Evraz Highveld Steel and Vanadium Limited of South Africa. The titanomagnetites contain iron ore in the form of magnetite and titanium with concentrations averaging 50-75 per cent FeO and 12-21 per cent TiO₂. The titaniferous iron ores have been historically dismissed as a source of iron and titanium, due to the known difficulties of using iron ore with high titania content in blast furnaces. The economic potential for the extractability of the titaniferous magnetites lies in the capacity of the ores to be separated into iron rich and titanium rich concentrates usually through, crushing, grinding and magnetic separation. The separatability of iron oxides and titanium oxides, is dependent on the nature in which the titanium oxide occurs, with granular ilmenite being the most favourable since it can be separated from magnetite via magnetic separation. Titanium that occurs as finely exsolved lamellae or as iron-titanium oxides with low titania content such as ulvospinel render the potential recoverability of titanium poor. The Upper Zone vanadiferous titanomagnetites contain titanium in various forms varying from discrete granular ilmenite to finely exsolved lamellae as well as occurring as part of the minerals ulvospinel (Fe₂TiO₄) and titanomagnetite (a solid solution series between ulvospinel and magnetite) . Discrete ilmenite constitutes between 3-5 per cent by volume of the massive titanomagnetite ores, and between 5-10 per cent by volume of the magnetite-plagioclase cumulates with more than 50 per cent opaque oxide minerals. The purpose of this research was to investigate the mineralogical setting and distribution of the iron and titanium oxides within the magnetitite layers from top to bottom as well as spatially along a strike length of 2 000m to determine the potential for the titanium to be extracted from the titanomagnetite ores. The titanomagnetites of the Upper Zone of the Bushveld Complex with particular reference to the Northern Limb where this research was conducted contains titanium oxides as discrete ilmenite grains but in low concentrations whose potential for separate economic extraction will be challenging. The highest concentration of titanium in the magnetite ores is not contained in the granular ilmenite, but rather in ulvospinel and titanomagnetite as illustrated by the marked higher concentration of TiO₂ in the massive ores which contain less granular ilmenite in comparison to the disseminated ores which contain 3 to 8 percentage points higher granular ilmenite than the massive ores. On the scale of the main magnetite seam, the TiO₂ content increases with increasing stratigraphic height from being completely absent in the footwall anorthosite. The V₂2O₅ content also increases with stratigraphic height except for in one of the 3 boreholes where it drops with increasing height. The decrease or increase patterns are repeated in every seam. The titanomagnetites of the main magnetite seam display a variety of textures from coarse granular magnetite and ilmenite, to trellis ilmenite lamellae, intergranular ilmenite and magnesian spinels and fine exsolution lamellae of ulvospinel and ferro-magnesian spinels parallel to the magnetite cleavage. The bottom contact of the main magnetite seam is very sharp and there is no titanium or vanadium in the footwall barely 10cm below the contact. Chromium is present in the bottom of the 4 layers that constitute the main magnetite seam and it upwards decreases rapidly. In boreholes P21 and P55, there are slight reversals in the TiO₂ and V₂O₅ content towards the top of the magnetite seams.

Page generated in 0.0542 seconds