• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • Tagged with
  • 12
  • 12
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Produção de coagulantes férricos na mineração de carvão

Menezes, Jean Carlo Salome dos Santos January 2009 (has links)
A mineração de carvão gera milhões de toneladas de rejeitos, contendo pirita (FeS2). A oxidação da pirita, na presença de ar e água, dá origem a um importante problema ambiental comum em regiões de mineração de carvão, a geração de drenagem ácida de mina (DAM). A oxidação da pirita em presença de água promove a formação de H2SO4 (ácido sulfúrico) o que promove a liberação de ferro nas formas de Fe+2 e Fe+3 , sulfatos e uma série de outros metais como Al, Mn e Zn. Esse problema ocorre de forma bastante intensa na região carbonífera do sul do Brasil em especial nos Estados de Santa Catarina e Paraná. A DAM produzida pelos rejeitos da mineração de carvão necessita passar por um processo de tratamento visando diminuir a acidez e a carga de metais despejada no meio, de forma a atender as exigências ambientais. Assim, o objetivo do presente trabalho foi estudar a produção de um coagulante, o sulfato férrico, a partir dos seguintes materiais: (a) lodo férrico obtido por precipitação seletiva da DAM; (b) rejeito obtido pela jigagem do carvão da Camada Barro Branco, Santa Catarina; e (c) concentrado de pirita obtido pelo rebeneficiamento do rejeito de carvão da Mina do Cambuí, Paraná. A metodologia para a produção do coagulante a partir do lodo consistiu na inicialmente na precipitação seletiva do ferro em pH 3,8, lavagem do precipitado, adição de ácido sulfúrico e evaporação para obtenção de uma solução com concentração de Fe3+ de até aproximadamente 12%. A metodologia para a obtenção do coagulante a partir da pirita presente no rejeito de carvão ou no concentrado de pirita consistiu na percolação de água sob condições oxidantes para a produção de uma lixívia rica em sulfato férrico. A lixívia também foi evaporada para obtenção de uma solução de sulfato férrico com concentrações de Fe3+ de até aproximadamente 12%. A qualidade do coagulante produzido foi avaliada em termos da concentração de Fe, Al, Ca, Mn, Zn, Cu e sulfatos. Os resultados demonstram que todos os materiais estudados apresentaram potencial de produção do coagulante. Entre os contaminantes encontrados, destacam-se os elementos alumínio, cálcio, manganês e zinco. Entretanto, quanto maior o teor de enxofre da amostra, maior o rendimento e maior pureza do produto. Concluiu-se que o beneficiamento do rejeito de carvão para a concentração da pirita permite a obtenção de sulfato férrico de melhor qualidade. Os coagulantes produzidos foram utilizados no tratamento do esgoto do Campus do Vale da UFRGS e de água de abastecimento da região de Porto Alegre. As idéias de valorização dos rejeitos da mineração de carvão estão em sintonia com os princípios da atualidade no que diz respeito ao desenvolvimento sustentável e aos programas de valoração de resíduos e produção mais limpa. / The coal mining generates millions of tonnes of tailings containing pyrite (FeS2). The oxidation of pyrite in the presence of air and water, gives rise to an important environmental problem common in areas of coal mining, the generation of acid mine drainage (AMD). The oxidation of pyrite in the presence of water promotes the formation of H2SO4 (sulfuric acid) which promotes the release of iron in the form of Fe +2 and Fe +3, sulphates and a host of other metals such as Al, Mn and Zn. This problem occurs quite intense in the coal in southern Brazil in particular in the states of Santa Catarina and Parana. The DAM produced by coal waste mining need to go through a treatment process in order to decrease the acidity and metal load discharged into the environment, in order to meet environmental requirements. The objective of this work was to study the production of a coagulant, ferric sulfate, with the following materials: (a) ferric sludge obtained by selective precipitation of DAM (b) obtained by reject coal concentration of the Layer Barro Branco, Santa Catarina, and (c) pyrite concentrate obtained by concentration of the tailings coal mine of Cambuí, Paraná. The methodology for the production of coagulant from sludge was the first in the selective precipitation of iron in pH 3.8, washing the precipitate with sulfuric acid and evaporation to obtain a solution with Fe 3 + concentration of approximately 12% with Fe2O3. The methodology for obtaining the coagulant from the pyrite present in coal or reject the pyrite concentrate was the percolation of water under oxidizing conditions to produce a liquor rich in ferric sulphate. Leach was also evaporated to obtain a solution of ferric sulphate with concentrations of Fe3 + up to approximately 12%. The quality of the coagulant was evaluated in terms of concentration of Fe, Al, Ca, Mn, Zn, Cu and sulfates. The results show that all the materials studied showed potential for production of the coagulant. Among the contaminants found, highlight the elements aluminum, calcium, manganese and zinc. However, the higher the sulfur content of the sample, the higher the yield and higher purity of the product. It was concluded that the processing of the waste coal to the concentration of pyrite to obtain ferric sulphate better. Coagulants produced were used in the treatment of sewage Campus do Vale UFRGS and water supply in the region of Porto Alegre. Ideas for use of tailings from coal mining are in line with the principles of the present time regarding the development and evaluation programs for waste and cleaner production.
2

Produção de coagulantes férricos na mineração de carvão

Menezes, Jean Carlo Salome dos Santos January 2009 (has links)
A mineração de carvão gera milhões de toneladas de rejeitos, contendo pirita (FeS2). A oxidação da pirita, na presença de ar e água, dá origem a um importante problema ambiental comum em regiões de mineração de carvão, a geração de drenagem ácida de mina (DAM). A oxidação da pirita em presença de água promove a formação de H2SO4 (ácido sulfúrico) o que promove a liberação de ferro nas formas de Fe+2 e Fe+3 , sulfatos e uma série de outros metais como Al, Mn e Zn. Esse problema ocorre de forma bastante intensa na região carbonífera do sul do Brasil em especial nos Estados de Santa Catarina e Paraná. A DAM produzida pelos rejeitos da mineração de carvão necessita passar por um processo de tratamento visando diminuir a acidez e a carga de metais despejada no meio, de forma a atender as exigências ambientais. Assim, o objetivo do presente trabalho foi estudar a produção de um coagulante, o sulfato férrico, a partir dos seguintes materiais: (a) lodo férrico obtido por precipitação seletiva da DAM; (b) rejeito obtido pela jigagem do carvão da Camada Barro Branco, Santa Catarina; e (c) concentrado de pirita obtido pelo rebeneficiamento do rejeito de carvão da Mina do Cambuí, Paraná. A metodologia para a produção do coagulante a partir do lodo consistiu na inicialmente na precipitação seletiva do ferro em pH 3,8, lavagem do precipitado, adição de ácido sulfúrico e evaporação para obtenção de uma solução com concentração de Fe3+ de até aproximadamente 12%. A metodologia para a obtenção do coagulante a partir da pirita presente no rejeito de carvão ou no concentrado de pirita consistiu na percolação de água sob condições oxidantes para a produção de uma lixívia rica em sulfato férrico. A lixívia também foi evaporada para obtenção de uma solução de sulfato férrico com concentrações de Fe3+ de até aproximadamente 12%. A qualidade do coagulante produzido foi avaliada em termos da concentração de Fe, Al, Ca, Mn, Zn, Cu e sulfatos. Os resultados demonstram que todos os materiais estudados apresentaram potencial de produção do coagulante. Entre os contaminantes encontrados, destacam-se os elementos alumínio, cálcio, manganês e zinco. Entretanto, quanto maior o teor de enxofre da amostra, maior o rendimento e maior pureza do produto. Concluiu-se que o beneficiamento do rejeito de carvão para a concentração da pirita permite a obtenção de sulfato férrico de melhor qualidade. Os coagulantes produzidos foram utilizados no tratamento do esgoto do Campus do Vale da UFRGS e de água de abastecimento da região de Porto Alegre. As idéias de valorização dos rejeitos da mineração de carvão estão em sintonia com os princípios da atualidade no que diz respeito ao desenvolvimento sustentável e aos programas de valoração de resíduos e produção mais limpa. / The coal mining generates millions of tonnes of tailings containing pyrite (FeS2). The oxidation of pyrite in the presence of air and water, gives rise to an important environmental problem common in areas of coal mining, the generation of acid mine drainage (AMD). The oxidation of pyrite in the presence of water promotes the formation of H2SO4 (sulfuric acid) which promotes the release of iron in the form of Fe +2 and Fe +3, sulphates and a host of other metals such as Al, Mn and Zn. This problem occurs quite intense in the coal in southern Brazil in particular in the states of Santa Catarina and Parana. The DAM produced by coal waste mining need to go through a treatment process in order to decrease the acidity and metal load discharged into the environment, in order to meet environmental requirements. The objective of this work was to study the production of a coagulant, ferric sulfate, with the following materials: (a) ferric sludge obtained by selective precipitation of DAM (b) obtained by reject coal concentration of the Layer Barro Branco, Santa Catarina, and (c) pyrite concentrate obtained by concentration of the tailings coal mine of Cambuí, Paraná. The methodology for the production of coagulant from sludge was the first in the selective precipitation of iron in pH 3.8, washing the precipitate with sulfuric acid and evaporation to obtain a solution with Fe 3 + concentration of approximately 12% with Fe2O3. The methodology for obtaining the coagulant from the pyrite present in coal or reject the pyrite concentrate was the percolation of water under oxidizing conditions to produce a liquor rich in ferric sulphate. Leach was also evaporated to obtain a solution of ferric sulphate with concentrations of Fe3 + up to approximately 12%. The quality of the coagulant was evaluated in terms of concentration of Fe, Al, Ca, Mn, Zn, Cu and sulfates. The results show that all the materials studied showed potential for production of the coagulant. Among the contaminants found, highlight the elements aluminum, calcium, manganese and zinc. However, the higher the sulfur content of the sample, the higher the yield and higher purity of the product. It was concluded that the processing of the waste coal to the concentration of pyrite to obtain ferric sulphate better. Coagulants produced were used in the treatment of sewage Campus do Vale UFRGS and water supply in the region of Porto Alegre. Ideas for use of tailings from coal mining are in line with the principles of the present time regarding the development and evaluation programs for waste and cleaner production.
3

Produção de coagulantes férricos na mineração de carvão

Menezes, Jean Carlo Salome dos Santos January 2009 (has links)
A mineração de carvão gera milhões de toneladas de rejeitos, contendo pirita (FeS2). A oxidação da pirita, na presença de ar e água, dá origem a um importante problema ambiental comum em regiões de mineração de carvão, a geração de drenagem ácida de mina (DAM). A oxidação da pirita em presença de água promove a formação de H2SO4 (ácido sulfúrico) o que promove a liberação de ferro nas formas de Fe+2 e Fe+3 , sulfatos e uma série de outros metais como Al, Mn e Zn. Esse problema ocorre de forma bastante intensa na região carbonífera do sul do Brasil em especial nos Estados de Santa Catarina e Paraná. A DAM produzida pelos rejeitos da mineração de carvão necessita passar por um processo de tratamento visando diminuir a acidez e a carga de metais despejada no meio, de forma a atender as exigências ambientais. Assim, o objetivo do presente trabalho foi estudar a produção de um coagulante, o sulfato férrico, a partir dos seguintes materiais: (a) lodo férrico obtido por precipitação seletiva da DAM; (b) rejeito obtido pela jigagem do carvão da Camada Barro Branco, Santa Catarina; e (c) concentrado de pirita obtido pelo rebeneficiamento do rejeito de carvão da Mina do Cambuí, Paraná. A metodologia para a produção do coagulante a partir do lodo consistiu na inicialmente na precipitação seletiva do ferro em pH 3,8, lavagem do precipitado, adição de ácido sulfúrico e evaporação para obtenção de uma solução com concentração de Fe3+ de até aproximadamente 12%. A metodologia para a obtenção do coagulante a partir da pirita presente no rejeito de carvão ou no concentrado de pirita consistiu na percolação de água sob condições oxidantes para a produção de uma lixívia rica em sulfato férrico. A lixívia também foi evaporada para obtenção de uma solução de sulfato férrico com concentrações de Fe3+ de até aproximadamente 12%. A qualidade do coagulante produzido foi avaliada em termos da concentração de Fe, Al, Ca, Mn, Zn, Cu e sulfatos. Os resultados demonstram que todos os materiais estudados apresentaram potencial de produção do coagulante. Entre os contaminantes encontrados, destacam-se os elementos alumínio, cálcio, manganês e zinco. Entretanto, quanto maior o teor de enxofre da amostra, maior o rendimento e maior pureza do produto. Concluiu-se que o beneficiamento do rejeito de carvão para a concentração da pirita permite a obtenção de sulfato férrico de melhor qualidade. Os coagulantes produzidos foram utilizados no tratamento do esgoto do Campus do Vale da UFRGS e de água de abastecimento da região de Porto Alegre. As idéias de valorização dos rejeitos da mineração de carvão estão em sintonia com os princípios da atualidade no que diz respeito ao desenvolvimento sustentável e aos programas de valoração de resíduos e produção mais limpa. / The coal mining generates millions of tonnes of tailings containing pyrite (FeS2). The oxidation of pyrite in the presence of air and water, gives rise to an important environmental problem common in areas of coal mining, the generation of acid mine drainage (AMD). The oxidation of pyrite in the presence of water promotes the formation of H2SO4 (sulfuric acid) which promotes the release of iron in the form of Fe +2 and Fe +3, sulphates and a host of other metals such as Al, Mn and Zn. This problem occurs quite intense in the coal in southern Brazil in particular in the states of Santa Catarina and Parana. The DAM produced by coal waste mining need to go through a treatment process in order to decrease the acidity and metal load discharged into the environment, in order to meet environmental requirements. The objective of this work was to study the production of a coagulant, ferric sulfate, with the following materials: (a) ferric sludge obtained by selective precipitation of DAM (b) obtained by reject coal concentration of the Layer Barro Branco, Santa Catarina, and (c) pyrite concentrate obtained by concentration of the tailings coal mine of Cambuí, Paraná. The methodology for the production of coagulant from sludge was the first in the selective precipitation of iron in pH 3.8, washing the precipitate with sulfuric acid and evaporation to obtain a solution with Fe 3 + concentration of approximately 12% with Fe2O3. The methodology for obtaining the coagulant from the pyrite present in coal or reject the pyrite concentrate was the percolation of water under oxidizing conditions to produce a liquor rich in ferric sulphate. Leach was also evaporated to obtain a solution of ferric sulphate with concentrations of Fe3 + up to approximately 12%. The quality of the coagulant was evaluated in terms of concentration of Fe, Al, Ca, Mn, Zn, Cu and sulfates. The results show that all the materials studied showed potential for production of the coagulant. Among the contaminants found, highlight the elements aluminum, calcium, manganese and zinc. However, the higher the sulfur content of the sample, the higher the yield and higher purity of the product. It was concluded that the processing of the waste coal to the concentration of pyrite to obtain ferric sulphate better. Coagulants produced were used in the treatment of sewage Campus do Vale UFRGS and water supply in the region of Porto Alegre. Ideas for use of tailings from coal mining are in line with the principles of the present time regarding the development and evaluation programs for waste and cleaner production.
4

A comparison of two liner materials for use in the ferric sulfate pulpotomy

Mohamed, N. January 2004 (has links)
Magister Chirurgiae Dentium (MChD) / Pulp therapy in the primary dentition has always been a source of much controversy. Different pulpotomy techniques and medicaments have been covered extensively in the literature but due to the increasing awareness of the potential deleterious effects of some of these medicaments, a need has arisen in the dental profession to fmd safer, alternative pulpotomy agents. Ferric sulfate and calcium hydroxide have been suggested as possible, more biologically acceptable alternatives to formocresol, which is known for its toxic side effects. Ferric sulfate is one of the most recent agents used in vital pulp therapy and has enjoyed reasonable success. Further controversy also exists in terms of the type of base which is placed over the amputated pulp. The choice of the base seems to determine the pulpal response. Two bases, calcium hydroxide (Dycal) and zinc oxide-eugenol (Kalzinol) have both been used in separate studies but have never been compared. The aim of this study is to compare the success rate obtained when applying one or the other of these two bases following a ferric sulfate pulpotomy. Presently it is unknown which base is best. In this study, after haemostasis was achieved with damp cotton pellets, ferric sulfate was applied to the pulpal stumps. Half of the cases then received a Dycal base followed by a cured layer of Vitrebond and a permanent amalgam restoration. The other half of the cases received a base of zinc oxide-eugenol (Kalzinol) followed by an amalgam restoration. Overall, teeth treated with Dycal demonstrated a higher failure rate when compared with those that received the Kalzinol base. Abscess formation and internal resorption were the most common causes of failure. Even though the Kalzinol base demonstrated greater success, there were still quite a few failures. This study demonstrates, that even with the use of a haemostatic agent, calcium hydroxide cannot be recommended as a medicament in primary tooth pulpotomies. It also highlights the need for alternative pulpotomy medicaments that are not irritating or harmful to the pulp.
5

Effect of Three Different Contamination Removal Methods on Bond Strength of Ceramic To Enamel Contaminated With Aluminum Chloride and Ferric Sulfate

Gonzalez, Cesar 01 January 2018 (has links)
Background: The need to control moisture and contamination is crucial in adhesive dentistry, especially when rubber dam isolation is not feasible. Hemostatic contamination can negatively affect adhesion to tooth substrate. To achieve better outcomes, hemostatic agents should be rinsed off properly using a method that will remove the contamination and will not affect the μ-SBS. Objective: To evaluate and compare the effect of three different aluminum chloride and ferric sulfate contamination removal methods on the μ-SBS of lithium disilicate glass-ceramic bonded to enamel and to compare the type of fracture between samples. Material and Methods: Lithium disilicate blocks (IPS e.max CAD) were cut into samples of 2 mm in diameter and 3mm in height. Thirty-five human molar teeth were collected and separated into seven groups (n=17) Groups: G1(control): No contamination. G2: Contamination with aluminum chloride and removal by 30 seconds water-rinse. G3: Contamination with aluminum chloride, removal by re-etching (37.5% phosphoric acid), water-rinse. G4: Contamination with aluminum chloride, removal with 18% EDTA G5: Contamination with ferric sulfate, removal with water-rinse. G6: Contamination with ferric sulfate, removal by re-etching (37.5% phosphoric acid), water-rinse and dried. G7: Contamination with ferric sulfate, removal with 18% EDTA. The enamel surface was etched, then contaminated with aluminum chloride and ferric sulfate, cleaned using 3 different methods, previously described. Ceramic samples were etched with HF acid, silanated then bonded to enamel surface using Optibond FL, Variolink veneer cement and the Elipar S10 curing light, to avoid oxygen inhibition restoration margins were cover with a glycerin to complete polymerization of 10 -30 seconds each side. Specimens were stored in deionized water for 7 days, then subjected to μ-SBS testing, fractured specimens were examined with a stereomicroscope to determine the type of fracture, and five sample of each group were selected for SEM. To compare differences for the outcome a general linear mode ANOVA was created, and data recorded. Results: There were statistically significant differences among the studied groups for the μ-SBS (p< 0.05). The G6 (Ferric sulfate- Re-etching) was the closest mean μ-SBS (10.75 MPa) to the G1(control group).μ-SBS (16.24 MPa), the lowest μ-SBS (6.13 MPa) for the G4 (Aluminum chloride-EDTA). The groups using ferric sulfate as a cleaning method presented higher μ-SBS MPa than the groups using aluminum chloride as a cleaning method. The type of fracture on groups with higher μ-SBS (MPa), G6 - 10.75 MPa (ferric sulfate-reetching), G5 - 9.21 μ-SBS(MPa) (Ferric sulfate-water) presented more cohesive fractures, while groups with lower μ-SBS(MPa), G4 – 6.13 MPa (Aluminum chloride- EDTA), G3 – 6.27 (aluminum chloride- re- etching) presented more mixed fractures. Conclusions: The present study sought to investigate the effect of three different contamination removal methods on bond strength of ceramic to enamel contaminated with aluminum chloride and ferric sulfate. Ferric sulfate hemostatic agent showed higher μ-SBS in all contamination removal methods when compare to aluminum chloride hemostatic agent. But all the contamination removal methods in both groups failed to increase the bond strength on enamel to the level of the control group. Further research is required before we can make definitive conclusions
6

The Evaluation of Ferrous, Ferric and an Iron Oxidizing Bacterium (Acidithiobacillus ferrooxidans) on the Corrosion of Stainless Steel 304L

Sanchez Alamina, Arcelia del Carmen January 2017 (has links)
No description available.
7

Využití tlakovzdušné flotace pro terciární stupeň čištění odpadních vod / The use of a dissolved air flotation for tertiary stage of wastewater treatment

Čmaradová, Miroslava January 2013 (has links)
The thesis is focused on the area of wastewater treatment. There is a solution possibility of using flotation for the removal of phosphorus precipitates formed during the tertiary treatment of wastewater. The first part is devoted to a general description of wastewater treatment, there is also described as a flotation separation technology and precipitation of phosphorus. The second part is practically oriented. It describes the experimental equipment used for the precipitation of phosphorus and subsequent removal of the precipitate flotation, during the experiment and the results obtained.
8

[pt] OTIMIZAÇÃO DE PROCESSO PARA PRODUÇÃO DO COAGULANTE SULFATO FÉRRICO PELA OXIDAÇÃO DE SULFATO FERROSO COM PERÓXIDO DE HIDROGÊNIO / [en] PROCESS OPTIMIZATION FOR THE PRODUCTION OF FERRIC SULFATE COAGULANT BY THE OXIDATION OF FERROUS SULFATE WITH HYDROGEN PEROXIDE

VERONICA BARBOSA MAZZA 25 March 2020 (has links)
[pt] Sabe-se que o coagulante sulfato férrico pode ser obtido através da reação de oxidação entre sulfato ferroso e peróxido de hidrogênio em meio ácido. Porém, o método conhecido de obtenção deste coagulante em escala industrial utilizando o peróxido de hidrogênio como agente oxidante não proporciona condições economicamente atrativas, frente aos demais processos. Este potente agente oxidante sofre forte influência da temperatura e da presença de íons ferro no seu processo de auto decomposição em água e oxigênio. Pode-se considerar que as condições do meio reacional, na etapa de adição do agente oxidante, são os fatores determinantes para a produção do coagulante férrico com o maior aproveitamento do peróxido de hidrogênio adicionado. O presente trabalho teve como objetivo investigar as condições necessárias para a produção do coagulante férrico utilizando o peróxido de hidrogênio, em um processo economicamente competitivo. A pesquisa foi fundamentada nas técnicas de planejamento de experimentos e otimização de processos. A modelagem matemática do processo possibilitou a definição da magnitude dos parâmetros a serem utilizados otimizando o processo e a especificação das características desejadas do produto final. As variáveis independentes estudadas na modelagem matemática foram: temperatura (7,5 – 27,5 graus celsius), quantidade de peróxido de hidrogênio (100 – 300 porcento) referente à sua quantidade estequiométrica e a diluição do meio utilizando água (100 – 300 porcento) referente à sua quantidade estequiométrica. As quantidades estequiométricas dos reagentes foram determinadas visando ao atingimento das especificações de um coagulante férrico comercial. O modelo desenvolvido foi sobre a Conversão de Fe2(+) em Fe3(+) (porcento) e avaliado através da Análise da Variância (ANOVA). As condições ótimas escolhidas para o ponto ótimo foram: temperatura igual a 17,5 graus celsius, 150 porcento da quantidade estequiométrica de peróxido de hidrogênio e 200 porcento da quantidade estequiométrica de água. A resposta da etapa de otimização indicou uma conversão de 96,17 porcento de Fe2(+) em Fe3(+), resultando em um coagulante dentro dos padrões especificados por norma técnica. O modelo matemático obtido previu uma conversão de 96,13 porcento de Fe2(+) em Fe3(+), resultando em um erro percentual de 0,043 porcento entre o resultado predito pelo modelo matemático e o resultado experimental. As análises das superfícies de resposta e da quantidade de peróxido de hidrogênio residual em solução indicaram que o controle do processo em baixas temperaturas contribui para o melhor aproveitamento do peróxido de hidrogênio na conversão de Fe2(+) em Fe3(+), devido à desaceleração da auto decomposição incitada pelo fator temperatura. A análise do potencial de redução ao longo da reação em função do perfil de conversão mostrou que conversões acima de 90 porcento de Fe2(+) em Fe3(+) apresentaram potencial redox (Eh) correspondente acima de 0,70 Volts, indicando a possibilidade da utilização deste parâmetro no controle da conversão em processos industriais. / [en] It is known that the coagulant ferric sulfate can be obtained by the oxidation reaction of ferrous sulfate with hydrogen peroxide in acidic medium. However, the known method of obtaining this coagulant on an industrial scale using hydrogen peroxide as an oxidizing agent do not provide economically attractive conditions compared to other processes. This potent oxidizing agent undergoes strong influence of the temperature and the presence of iron ions in its process of self-decomposition in water and oxygen. It can be considered that the conditions of the reaction medium in the step of adding the oxidizing agent are the determining factors for the production of the ferric coagulant with the greatest use of the added hydrogen peroxide. The present work had the objective of investigating the necessary conditions for the production of the ferric coagulant using the hydrogen peroxide as an economically competitive process. The research was based on the techniques of factorial design and process optimization. The mathematical modeling of the process allowed the definition of the magnitude of the parameters to be used, optimizing the process and specifying the desired characteristics of the final product. The independent variables studied in the mathematical modeling were: temperature (7,5 – 27,5 celsius degrees), amount of hydrogen peroxide (100-300 percent) relative to its stoichiometric amount, and dilution of the medium using water (100-300 percent) relative to its stoichiometric amount. The stoichiometric quantities of the reactants were determined in order to reach the specifications of a commercial ferric coagulant. The model developed was on Conversion of Fe2(+) to Fe3(+) (percent) and evaluated through Analysis of Variance (ANOVA). The optimum conditions chosen for the optimum were: temperature equal to 17,5 Celsius degrees, 150 percent of the stoichiometric amount of hydrogen peroxide and 200 percent of the stoichiometric amount of water. The optimization of the response surfaces indicated a conversion of 96.17 percent Fe2(+) to Fe3(+), resulting in a coagulant within the characteristics specified by the technical standard. The obtained mathematical model predicted a conversion of 96.13 percent Fe2(+) to Fe3(+), resulting in a percentage error of 0,043 percent between the predicted results by the mathematical model and the experimental results. The analysis of the response surfaces and the amount of residual hydrogen peroxide in solution indicated that the control of the process at low temperatures contributes to the better utilization of the hydrogen peroxide in the conversion of Fe2(+) into Fe3(+), due to the deceleration of the self-induced decomposition by the factor temperature. The analysis of the reduction potential along the conversion profile function showed that conversions above 90 percent of Fe2(+)into Fe3(+) presented a corresponding redox potential (Eh) above 0,70 Volts, indicating the possibility of using this parameter for the control of conversion into industrial processes.
9

Optimizing the Removal of Natural Organic Matter in Drinking Water While Avoiding Unintended Consequences Following Coagulation

Knowles, Alisha 27 May 2011 (has links)
Over the past decade, the objectives for coagulation based drinking water treatment processes have changed significantly. These changes are a result of stringent goals related to natural organic matter (NOM) removal to mitigate the formation of subsequent harmful and health-related disinfection by-products (DBPs) and the need to achieve adequate filtration performance to ensure sufficient particle removal for pathogen control. Another concern associated with coagulation optimization is the potential unintended consequences of a coagulant change on the distribution system, specifically related to lead release from lead pipe and solder materials. Optimizing these multi-objectives in a direct filtration treatment process presents significant challenges for source waters characterized by low levels of turbidity, alkalinity and organic matter content. Bench and pilot-scale experiments were conducted to evaluate the performance of ferric sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH) against aluminum sulfate (alum) using variable coagulation dosage and pH conditions for a direct filtration facility. Bench-scale experiments were conducted to optimize NOM removal during coagulation using traditional organic matter surrogates coupled with molecular size characterization techniques. Pilot-scale studies provided a snapshot of feasibility in terms of filtration performance for favourable bench-scale conditions and also identified optimal conditions for filtration performance. Results from pilot testing demonstrated that favourable conditions identified for increased potential NOM removals during bench-scale testing were significantly different than optimal filtration conditions identified during pilot studies; and, in fact, severely compromised direct filtration performance due to increased solids loading to the filters. Bench-scale experiments evaluated lead leaching from lead and lead:tin solder galvanically connected to copper under stagnant conditions using variable chloride-to-sulfate mass ratio (CSMR) conditions for alum, ferric sulfate and PACl. Although recent research identifies high CSMRs (>0.5) as the main mechanism of attack in distribution systems following coagulant changeovers, CSMR was not the primary catalyst for lead leaching following the coagulant changeover conditions evaluated in this study. Residual concentrations of iron and aluminum remaining following coagulation were the principal contributors. Positive correlations were revealed between particulate iron and particulate lead concentrations following stagnation demonstrating that the adsorption of lead to iron oxides is a viable hypothesis for lead release.
10

A Comparison Of Aluminum And Iron-based Coagulants For Treatment Of Surface Water In Sarasota County, Florida

Yonge, David 01 January 2012 (has links)
In this research, five different coagulants were evaluated to determine their effectiveness at removing turbidity, color and dissolved organic carbon (DOC) from a surface water in Sarasota County, Florida. Bench-scale jar tests that simulated conventional coagulation, flocculation, and sedimentation processes were used. Iron-based coagulants (ferric chloride and ferric sulfate) and aluminum-based coagulants (aluminum sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH)) were used to treat a highly organic surface water supply (DOC ranging between 10 and 30 mg/L), known as the Cow Pen Slough, located within central Sarasota County, Florida. Isopleths depicting DOC and color removal efficiencies as a function of both pH and coagulant dose were developed and evaluated. Ferric chloride and ACH were observed to obtain the highest DOC (85% and 70%, respectively) and color (98% and 97%, respectively) removals at the lowest dose concentrations (120 mg/L and 100 mg/L, respectively). Ferric sulfate was effective at DOC removal but required a higher concentration of coagulant and was the least effective coagulant at removing color. The traditional iron-based coagulants and alum had low turbidity removals and they were often observed to add turbidity to the water. PACl and ACH had similar percent removals for color and turbidity achieving consistent percent removals of 95% and 45%, respectively, but PACl was less effective than ACH at removing organics. Sludge settling curves, dose-sludge production ratios, and settling velocities were determined at optimum DOC removal conditions for each coagulant. Ferric chloride was found to have the highest sludge settling rate but also produced the largest sludge quantities. Total trihalomethane formation potential (THMFP) was measured iv for the water treated with ferric chloride and ACH. As with DOC removal, ferric chloride yielded a higher percent reduction with respect to THMFP.

Page generated in 0.4333 seconds