• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 27
  • 2
  • 1
  • 1
  • Tagged with
  • 182
  • 105
  • 37
  • 30
  • 23
  • 22
  • 21
  • 20
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management. / October 2008
172

Plant bacterial inoculants to remediate hydrocarbon contaminated soil

Fernet, Jennifer Lynne 20 February 2008 (has links)
The hypothesis for this study was that phenanthrene degrading bacterial inoculants, in combination with grass species able to tolerate petroleum hydrocarbon contamination, will result in increased degradation, as compared to natural rates of hydrocarbon degradation, or to rates of degradation attributed to bacteria or plants alone. Three experiments were performed to examine this hypothesis: i) assessment of the effect of phenanthrene degrading bacteria (<i>Sphingomonas yanoikuyae</i>, <i>Rahnella aquatilis</i>, and <i>Arthrobacter globiformis</i>) on seed germination, location of attachment on seeds and roots, and inoculant survival on selected grass species, ii) determination of the inoculant survival in contaminated soil in the absence of plants and the ability to degrade target compounds, and iii) degradation potential and survival of selected grass species and bacterial inoculants in soil. In general, all applied inoculants were able to effectively colonize the seeds and had a neutral or positive effect on seed germination and seedling growth. Possible plant and bacteria pairs were chosen based on positive influence of the inoculant and are as follows: perennial ryegrass (<i>Lolium perenne</i>) or creeping red fescue (<i>Festuca rubra</i>) with <i>A. globiformis</i> or <i>S. yanoikuyae</i>, or slender wheatgrass (<i>Elymus trachycaulus</i>) with <i>A. globiformis</i> or <i>R. aquatilis</i>. Soil-based assessment of the survival and degradation of hydrocarbons by the selected inoculants was examined with or without a manure nutrient amendment. The addition of the inoculants had a positive impact on the efficacy of hydrocarbon removal in the soil. The manure-amended soil, or <i>A. globiformis</i> inoculated non-amended soil treatments reduced total petroleum hydrocarbon concentration by ~45%, whereas the non-amended control only resulted in a ~20% reduction. When soils were amended with manure and inoculated with any of the phenanthrene degrading bacteria, contaminant concentration decreased in soil by ~33%. <i>Sphingomonas yanoikuyae</i> survived the longest in soil in the absence of plants. A growth chamber experiment was conducted to determine the efficacy of plant and bacteria pairs for hydrocarbon removal in recalcitrant contamination found in soil from Bruderheim, Alberta. Additional replicates containing this soil were spiked with hexadecane, phenanthrene, and pyrene so the effectiveness of the plant and bacteria pairs at higher levels of fresh contamination could be assessed. In the spiked treatment, inoculation with <i>S. yanoikuyae</i> increased creeping red fescue root biomass. In the non-spiked treatment, <i>S. yanoikuyae</i> application increased creeping red fescue root and shoot biomass. Perennial ryegrass root and shoot biomass did not increase when inoculated with <i>S. yanoikuyae</i>, although root biomass values were observably higher in non-spiked soils. Creeping red fescue inoculated with <i>S. yanoikuyae</i> resulted in the greatest decrease in hydrocarbon concentration as compared to other treatments (~61%). The perennial ryegrass treatment, when inoculated with <i>S. yanoikuyae</i> increased percent hydrocarbon removal (~10%) above that obtained with perennial ryegrass alone. The addition of plants and <i>S. yanoikuyae</i> increased hydrocarbon degradation relative to control soils, although the addition of vegetation alone had a comparable effect. A critical benefit of inoculation was the increase in creeping red fescue root biomass at higher concentrations of contamination. This is important because the larger the root biomass the larger the volume of soil that can be remediated. The results indicate that the use of specific plant-bacterial inoculants can enhance remediation of hydrocarbon contaminated soils.
173

Pasture responses to lime and phosphorus on acid soils in Natal.

Miles, Neil. January 1986 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1986.
174

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management.
175

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management.
176

Investigating landscape change and ecological restoration: an integrated approach using historical ecology and GIS in Waterton Lakes National Park, Alberta

Levesque, Lisa Marie 02 September 2005 (has links)
This thesis examines landscape change from 1889 to the present within the foothills-parkland ecoregion of Waterton Lakes National Park (WLNP) in southwestern Alberta, Canada. Land cover dynamics are explored qualitatively and quantitatively using Geographical Information Systems and a combination of historical and contemporary data sources including: (1) Dominion Land Survey (DLS) transect records (1889), (2) repeat oblique photographs (1914 and 2004) and repeat aerial photography (1939 and 1999). Results indicate a consistent increase in woody vegetation cover, particularly aspen forest cover, within the foothills-parkland since 1889, largely at the expense of native grasslands. The primary drivers of these changes likely include: climatic influences, changes to the historical grazing regime, the suppression of natural fire cycles and the cessation of First Nations’ land management practices. This research illustrates the value of integrating multiple historical data sources for studying landscape change in the Canadian Rockies, and explores the implications of this change for ecological restoration in the foothills-parkland of WLNP.
177

Investigating landscape change and ecological restoration: an integrated approach using historical ecology and GIS in Waterton Lakes National Park, Alberta

Levesque, Lisa Marie 02 September 2005 (has links)
This thesis examines landscape change from 1889 to the present within the foothills-parkland ecoregion of Waterton Lakes National Park (WLNP) in southwestern Alberta, Canada. Land cover dynamics are explored qualitatively and quantitatively using Geographical Information Systems and a combination of historical and contemporary data sources including: (1) Dominion Land Survey (DLS) transect records (1889), (2) repeat oblique photographs (1914 and 2004) and repeat aerial photography (1939 and 1999). Results indicate a consistent increase in woody vegetation cover, particularly aspen forest cover, within the foothills-parkland since 1889, largely at the expense of native grasslands. The primary drivers of these changes likely include: climatic influences, changes to the historical grazing regime, the suppression of natural fire cycles and the cessation of First Nations’ land management practices. This research illustrates the value of integrating multiple historical data sources for studying landscape change in the Canadian Rockies, and explores the implications of this change for ecological restoration in the foothills-parkland of WLNP.
178

AN INTEGRATED CULTURAL MANAGEMENT APPROACH FOR BROWN PATCH DISEASE SUPPRESSION IN TALL FESCUE LAWNS

Jada S Powlen (6620417) 24 April 2023 (has links)
<p> Brown patch (caused by various <em>Rhizoctonia </em>and <em>Rhizoctonia-</em>like species) is one of the major summer diseases of tall fescue [<em>Schedonorus arundinaceus</em> (Schreb.) Dumort., nom. cons.]. Fungicides are available to suppress brown patch; however, there is increasing interest to reduce lawn pesticide inputs. Excessive summer nitrogen (N) applications and extended periods of leaf wetness have been suggested to enhance brown patch. Five projects were conducted from 2020 to 2022 to evaluate individual and various combinations of cultural management practices to improve brown patch management strategies through reducing chemical inputs and promoting environmentally sound integrated pest management (IPM) practices. Brown patch host resistance of 15 tall fescue cultivars was evaluated in a controlled environment study and various morphological characteristics were correlated to brown patch severity. A 45% reduction in brown patch was observed with a resistant cultivar, and cultivars with faster growth rates, wider sheath widths and shorter sheath length correlated with reduced brown patch resistance. A field study evaluated five cultivars fertilized with urea-N from April to July, totaling 73.5 or 245.0 kg N ha<sup>-1</sup>. A resistant cultivar had the greatest influence on reducing disease, and N-rate generally did not influence disease severity. Differences in seasonal brown patch was compared in a three-year field study for various natural organic fertilizers. Feather-bone meal and soybean meal-based products decreased disease compared to non-fertilized turf. Chemical suppression of leaf-wetness was studied using different surfactant chemistries applied on a 14 to 21-d application frequency and some chemistries reduced disease. When evaluating the various interactions of cultivar, N rate, and surfactant compared to a granular fungicide, the greatest impact was achieved when planting a resistant cultivar, reducing disease severity by 68%. Additionally, the combination of a resistant cultivar and application of a surfactant had the same seasonal brown patch compared to a susceptible cultivar with fungicide applications during year two of evaluation. In summary, these studies demonstrate significant reductions in brown patch can be achieved when utilizing the aforesaid best management practices which can substantially reduce the need for frequent lawn fungicides.  </p>
179

Urban Lawn Management: Addressing the Entomological, Agronomic, Economic, and Social Drivers

Alumai, Alfred 05 December 2008 (has links)
No description available.
180

Physiological effects of drought on perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.)

Butler, Tony January 2008 (has links)
The Canterbury plains are frequently exposed to summer drought and climate predictions forecast that the severity and frequency of summer drought will increase. The most commonly used pasture grass, perennial ryegrass (Lolium perenne L.), is drought sensitive. One possible method to maintain sward dry matter (DM) production under water stress is to use an alternative grass species such as tall fescue (Festuca arundinacea Schreb.). The objective of this research was to compare summer DM production of monoculture swards of perennial ryegrass and tall fescue under various seasonal drought regimes to study physiological and biochemical drought responses of each species. Data were collected over a period of two-summer seasons, Season One (2006-2007) and Season Two (2007-2008) in an automated rain shelter at Lincoln, Canterbury. Drought treatments included exposure of plants to a spring or autumn drought or a four-weekly "irrigated" drought regime. DM yields of the two species were similar under each watering regime. The control treatment, under non-limiting conditions, has the highest accumulated yield in both Season One and Two for ryegrass (17.1 and 15.7 t DM ha⁻¹) and tall fescue (18.8 and 16.0 t DM ⁻¹) respectively. Spring and autumn drought treatments were similar for the two species in accumulated yield in either season, however the exposure to drought stress returned yields lower than the control. Consistently, the lowest-yielding treatment was the four-weekly irrigated drought, which resulted in an average yield across species in Season One of 10.1 t DM ha⁻¹ and 8.35 t DM ha⁻¹ in Season Two. Growth rates of the swards were calculated using accumulated DM production against accumulated thermal time using a base temperature of 3°C for both species. The control treatments showed a strong linear relationship for both species in both seasons, though Season Two showed a period of approximately 390 °Cd of no growth. Spring growth was similar for all treatments until October when both the spring drought and four-weekly irrigated treatment deviated from the control as water stress commenced. Growth also ceased under autumn drought later in the season. The physiological drought responses between species and among treatments differed. Tall fescue under control conditions had the highest photosynthesis rates of 20.5 µmol CO₂ m⁻² s⁻¹,or 22% higher than ryegrass, whereas the four-weekly irrigated treatment showed no inter-species differences. Differences were also found for other gas exchange parameters. Physiological water use efficiency (phys WUE) in ryegrass was 15% greater than tall fescue in Season Two. Photosynthesis and gas exchange rates against leaf water potential showed declining gas flow in both species across all treatments in response to drying soil conditions and across all irrigation treatments. The osmo-protectant proline was 22% higher in concentration in ryegrass than in tall fescue in Season Two and increased in drought stressed treatments in both seasons. Water stress was found to reduce total chlorophyll concentrations in all treatments and in tall fescue, while little change occurred in the chlorophyll a:b ratio. In conclusion, the findings from this thesis suggest similar DM responses for the two species under drought. The findings suggests that tall fescue performs more as a "water user" under drought conditions, compared with perennial ryegrass, which is more a "water saver." Resonses to the changing environment to a point, before "shuttting up shop" through lower stomatal conductance.

Page generated in 0.0232 seconds