Spelling suggestions: "subject:"fiber reinforced concrete"" "subject:"fiber reinforced aconcrete""
111 |
Aparatos de baixo custo para ensaios biaxiais em concretos reforçados com fibras de aço / Low cost apparatuses for biaxial tests on steel fiber reinforced concretesPeres, Maria Vânia Nogueira do Nascimento January 2008 (has links)
Nas últimas décadas, a utilização de fibras de aço no reforço de elementos de concreto tem aumentado significativamente no cenário nacional e mesmo internacional, pois esta utilização melhora em muito as propriedades do material resultante, reduzindo sua fragilidade característica perante esforços de tração. Embora muito se conheça a respeito do comportamento de concretos reforçados com fibras sob solicitações uniaxiais, é sempre desejável que se possa prever adequadamente um comportamento mais amplo dos elementos feitos com tais materiais. Sendo assim, uma das soluções práticas para este tipo de questão seria a realização de ensaios sob solicitações biaxiais. No entanto, este tipo de análise se torna inviável em muitos casos, devido à falta de equipamentos adequados para sua realização. Assim, buscando-se colaborar com um melhor conhecimento dos concretos reforçados com fibras, o presente trabalho procurou desenvolver aparatos de ensaio de baixo custo capazes de solicitar corpos-de-prova em duas direções ortogonais. O comportamento do concreto reforçado com frações volumétricas de 0,5%, 1,0% e 1,5% de fibra foi, desta forma, avaliado a partir das seguintes proporções entre as tensões principais: ơ 2/ ơ 1 = 0/-1; ơ 2/ ơ 1 = -0,2/-1; ơ2 / ơ 1 = -0,5/-1; ơ 2/ ơ 1 = -1/-1. A partir das informações de resistência última e das deformações específicas obtidas nos ensaios, foi possível traçar as curvas de ruptura e analisar os padrões de ruptura do concreto reforçado com fibras de aço. Como esperado, os resultados obtidos nos ensaios mostraram que, sob estados de tensões biaxiais, ocorreu um aumento da resistência última e da rigidez do concreto para todas as relações de tensão analisadas ( ơ2/ ơ 1 = 0/-1; ơ 2/ ơ 1 = -0,2/-1;ơ 2/ ơ 1 = -0,5/-1; ơ 2/ ơ 1 = -1/-1). O aumento da resistência última em compressão biaxial, quando comparado ao concreto sob compressão uniaxial, foi de aproximadamente 20% para o concreto simples e, devido à adição de fibra, foi de aproximadamente 95% para uma relação de tensão igual a ơ 2/ ơ 1 = -0,5/-1. / In the last decades, the use of steel fibers to reinforce concrete elements has been significantly increased in the national scenario and even internationally, since its usage considerably improves the resulting material’s properties, reducing its characteristic fragility under tension. Although much is already known about the behavior of fiber reinforced concretes under uniaxial forces, a better understanding of the behavior of elements made of such materials is always desired. Therefore, a practical solution for this kind of problem would be to undertake biaxial tests. Nevertheless, this type of analysis sometimes turns out to be unviable because of the lack of adequate equipment for its realization. In this way, in an attempt to contribute with a better understanding of the fiber reinforced concretes, the present work tried to develop low-cost apparatuses capable of orthogonally loading specimens in two directions. The behavior of concrete reinforced with fiber volumetric fractions of 0.5%, 1.0%, and 1.5% was, therefore, evaluated under the following principal stresses’ proportions: ơ 2/ ơ 1 = ơ/-1;ơ 2/ ơ 1 = -0.2/-1; ơ 2/ơ 1 = -0.5/-1; ơ 2/ ơ 1 = -1/-1. From the ultimate strength values and from the obtained strains in the carried out tests, the rupture curves were possible to be plot, and the rupture modes and patterns of the fiber reinforced concretes were possible to be analyzed. As expected, the obtained results in the tests showed that, under biaxial stress states, an increase in ultimate strengths and stiffness of concretes for all the stress relations analyzed occurred ( ơ 2/ ơ 1 = 0/-1; ơ 2/ơ 1 = -0,2/-1; ơ 2/ ơ 1 = -0,5/-1; ơ 2/ ơ 1 = -1/-1). The increase in the ultimate strength in biaxial compression, when compared with concrete under uniaxial compression, was of about 20% for plain concrete and, due to the addition of fibers, about 95% for a stress relation equals to ơ 2/ ơ 1 = -0.5/-1.
|
112 |
Development of Design Procedures for Fiber Reinforced Concrete (FRC) & Ultra-High-Performance Concrete (UHPC) Based on Experimental EvaluationsJanuary 2018 (has links)
abstract: A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior of the fiber reinforced material. In addition to compressive tests, flexural tests, based on ASTM C1609 and EN 14651, were performed. The effect of the strain rate on the UHPC material was also investigated through the high-speed tensile tests at different strain rates. Alongside the usual measurement tools such as linear variable differential transformers (LVDT) and clip gages, digital image correlation (DIC) method was also used to capture the full-range deformations in the samples and localized crack propagations. Analytical approaches were suggested, based on the experimental results of the current research and other research groups, to provide design solutions for different applications and design approaches for UHPC and hybrid reinforced concrete (HRC) sections. The suggested methods can be used both in the ultimate limit state (ULS) and the serviceability limit state (SLS) design methods. Closed form relationships, based on the non-linear design of reinforced concrete, were used in the calculation of the load-deflection response of UHPC. The procedures were used in obtaining material properties from the flexural data using procedures that are based on back-calculation of material properties from the experimental results. Model simulations were compared with other results available in the literature. Performance of flexural reinforced UHPC concrete beam sections tested under different types of loading was addressed using a combination of fibers and rebars. The same analytical approach was suggested for the fiber reinforced concrete (FRC) sections strengthened (rehabilitated) by fiber reinforced polymers (FRP) and textile reinforced concrete (TRC). The objective is to validate the proper design procedures for flexural members as well as connection elements. The proposed solutions can be used to reduce total reinforcement by means of increasing the ductility of the FRC, HRC, and UHPC members in order to meet the required flexural reinforcement, which in some cases leads to total elimination of rebars. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2018
|
113 |
Double-punch test for evaluating the performance of steel fiber-reinforced concreteWoods, Aaron Paul 19 June 2012 (has links)
The objective of this study is to develop test protocols for comparing the effectiveness of fiber-reinforced concrete (FRC) mixtures with high-performance steel fibers. Steel fibers can be added to fresh concrete to increase the tensile strength, ductility, and durability of concrete structures. In order to quantify steel fiber-reinforced concrete (SFRC) mixtures for field applications, a material test capable of predicting the performance of SFRC for field loading conditions is required. However, current test methods used to evaluate the structural properties of FRC (such as residual strength and toughness) are widely regarded as inadequate; a simple, accurate, and consistent test method is needed. It was determined that the Double-Punch Test (DPT), originally introduced by Chen in 1970 for plain concrete, could be extended to fiber-reinforced concrete to satisfy this industry need. In the DPT, a concrete cylinder is placed vertically between the loading platens of the test machine and compressed by two steel punches located concentrically on the top and bottom surfaces of the cylinder. It is hypothesized that the Double-Punch Test is capable of comparing future fiber-reinforcement design options for use in structural applications, and is suitable for evaluating FRC in general. The DPT Research and Testing Program was administered to produce sufficient within-laboratory data to make conclusions and recommendations regarding the simplicity, reliability, and reproducibility of the DPT for evaluating the performance of SFRC. Several variables (including fiber manufacturer, fiber content, and testing equipment) were evaluated to verify the relevance of the DPT for FRC. In this thesis, the results of 120 Double-Punch Tests are summarized and protocols for its effective application to fiber-reinforced concrete are recommended. Also, fundamental data is provided that indicates the DPT could be standardized by national and international agencies, such as the American Society of Testing and Materials (ASTM), as a method to evaluate the mechanical behavior of FRC. This project is sponsored by the Texas Department of Transportation (TxDOT) through TxDOT Project 6348, "Controlling Cracking in Prestressed Concrete Panels and Optimizing Bridge Deck Reinforcing Steel," which is aimed at improving bridge deck construction through developments in design details, durability, and quality control procedures. / text
|
114 |
Impact resistance of high strength fiber reinforced concreteZhang, Lihe 05 1900 (has links)
Concrete structures may be subjected to dynamic loading during their service life. Understanding the dynamic properties of concrete structures is becoming critical because of the increased concern about the dynamic loading of both civilian and military structures, and especially, the recent increase in terrorist attacks on structures. Fiber reinforced concrete (FRC) is known to exhibit superior performance in its post-peak energy absorption capacity, (i.e., toughness) under flexural and tensile loading. However, the behavior of fiber reinforced concrete under compressive impact has not previously been investigated. In the present research, the response of fiber reinforced concrete was investigated over the full strain rate regime, from static loading to high strain rate loading, and finally to impact loading. The compressive toughness of FRC under static loading was studied using an existing Japanese standard (JSCE SF-5). Then, a test method for FRC under compressive impact loading was developed, involving the use of a high speed video camera system to measure the deformation of FRC cylinders under compressive impact.
The strain rate sensitivity of FRC in both flexure and compression was also fully investigated. FRC was found to have higher strengths under impact loading (both flexural and compressive) than under static loading. The compressive toughness under impact loading increased due to the high peak load and the high strain capacity. FRC under flexural impact loading showed a greater strength improvement than under static flexure. FRC displays a much higher Dynamic Improvement Factor (DIF) under flexural impact than under compressive impact. It gave an overall higher performance under impact than under static loading. It also exhibited a higher strain rate sensitivity than plain concrete in both compression and flexure.
Damage analysis, in terms of loss of strain energy, was carried out based on damage mechanics principles. Damage was found to increase with increasing strain rate. A new constitutive model was proposed to account for the relationship between DIF (Comp) and strain rate and the data derived from the model were found to be consistent with the experimental results.
|
115 |
SFRC Slabs Longitudinally Reinforced with High Strength SteelTalboys, Laura N Unknown Date
No description available.
|
116 |
Impact resistance of high strength fiber reinforced concreteZhang, Lihe 05 1900 (has links)
Concrete structures may be subjected to dynamic loading during their service life. Understanding the dynamic properties of concrete structures is becoming critical because of the increased concern about the dynamic loading of both civilian and military structures, and especially, the recent increase in terrorist attacks on structures. Fiber reinforced concrete (FRC) is known to exhibit superior performance in its post-peak energy absorption capacity, (i.e., toughness) under flexural and tensile loading. However, the behavior of fiber reinforced concrete under compressive impact has not previously been investigated. In the present research, the response of fiber reinforced concrete was investigated over the full strain rate regime, from static loading to high strain rate loading, and finally to impact loading. The compressive toughness of FRC under static loading was studied using an existing Japanese standard (JSCE SF-5). Then, a test method for FRC under compressive impact loading was developed, involving the use of a high speed video camera system to measure the deformation of FRC cylinders under compressive impact.
The strain rate sensitivity of FRC in both flexure and compression was also fully investigated. FRC was found to have higher strengths under impact loading (both flexural and compressive) than under static loading. The compressive toughness under impact loading increased due to the high peak load and the high strain capacity. FRC under flexural impact loading showed a greater strength improvement than under static flexure. FRC displays a much higher Dynamic Improvement Factor (DIF) under flexural impact than under compressive impact. It gave an overall higher performance under impact than under static loading. It also exhibited a higher strain rate sensitivity than plain concrete in both compression and flexure.
Damage analysis, in terms of loss of strain energy, was carried out based on damage mechanics principles. Damage was found to increase with increasing strain rate. A new constitutive model was proposed to account for the relationship between DIF (Comp) and strain rate and the data derived from the model were found to be consistent with the experimental results.
|
117 |
Optimization of structural panels for cost effective panelized constructionMousa, Mohammed Abdel-Moneim Abdel-Raouf. January 2007 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2007. / Description based on contents viewed July 8, 2009; title from PDF t.p. Includes bibliographical references (p. 115-116).
|
118 |
Avalia??o de concreto com adi??o de fibras de PET submetido a altas temperaturas / Assessment of concrete made with de PET fiber exposedo to high temperaturesMeneses, Ilzenete Andrade 28 December 2011 (has links)
Made available in DSpace on 2014-12-17T14:48:12Z (GMT). No. of bitstreams: 1
IlzeneteAM_DISSERT.pdf: 5171535 bytes, checksum: 3ffff6c7a33112292923ae5183a28ef1 (MD5)
Previous issue date: 2011-12-28 / The concrete for centuries constituted an essential structural element in the construction industry due to its relative ease of forming, before the weather durability, low cost, its lower maintenance compared to other materials such as steel. However, when the concrete is exposed to high temperatures tends to lose its mechanical characteristics, and may even result in loss of section, which undermines the stability and mechanical strength of structural elements. The pathologies resulting from exposure to elevated temperatures ranging from cracks, pops up chipping explosives (spalling). Recently, the technology of concrete is closely related to the study of its microstructure. The use of fibers added to concrete has been revealed as a solution to increase the mechanical strength of the concrete, it acts directly on the distribution of efforts to act in the play within the microstructure. In this work we used recycled PET fibers embedded in concrete with 15x2mm fck = 30MPa, water/cement ratio of 0.46, in works made for verification of mechanical strength of this mixture submitted to high temperature. The specimens of concrete with addition of PET fibers were tested after exposure to temperatures: ambient (30?C), 100?C, 200?C, 300?C, 400?C, 600?C and 900?C. It was found that the concrete loses significant strength when exposed to temperatures above 300?C, however the use of fiber PET may delay the risk of collapse of structures for the formation of a network of channels that facilitate the escape of vapor 'water, reducing the pore pressure inside the structural element / O concreto ao longo dos s?culos constituiu-se num elemento estrutural indispens?vel na constru??o civil, devido a sua relativa facilidade de moldagem, sua durabilidade diante das intemp?ries, seu baixo custo, sua menor necessidade de manuten??o, se comparado a outros materiais, como o a?o. No entanto, quando o concreto fica exposto a altas temperaturas tende a perder suas caracter?sticas mec?nicas, podendo inclusive ocorrer perda de se??o, que compromete a estabilidade e a resist?ncia mec?nica dos elementos estruturais. As patologias decorrentes da exposi??o ? elevadas temperaturas v?o desde as fissuras, estalos at? lascamentos explosivos. Nos ?ltimos tempos, a tecnologia do concreto est? intimamente ligada ao estudo de sua microestrutura. O uso de fibras adicionadas ao concreto tem se revelado como solu??o para o incremento de resist?ncia mec?nica do concreto, pois atua diretamente na distribui??o dos esfor?os que atuam na pe?a no ?mbito da microestrutura. Neste trabalho foram usadas fibras de PET proveniente da reciclagem de garrafas de refrigerante, para fabrica??o de vassouras. As fibra utilizadas tinham 2mm de largura por 15mm de comprimento, incorporadas ao concreto dosado para fck= 30MPa, rela??o ?gua/cimento 0.46, confeccionado em um canteiro obra, para verifica??o de resist?ncia mec?nica dessa mistura submetida ? elevadas temperaturas. Os corpos de prova dos concretos com e sem adi??o de fibras de PET foram ensaiados ap?s exposi??o ?s temperaturas: ambiente (30?C), 100?C, 200?C, 300?C, 400?C, 600?C e 900?C. Verificou-se que o concreto perde de forma significativa resist?ncia mec?nica quando exposto a temperaturas maiores que 300?C. No entanto o uso da fibra de PET pode retardar o risco de colapso de estruturas pela forma??o de uma rede de canais que facilitam a fuga do vapor d??gua, reduzindo a poropress?o no interior do elemento estrutural
|
119 |
Análise do comportamento de estruturas de concreto reforçado com fibras de aço via método dos elementos finitos / Behaviour analysis of steel fiber reinforced concrete structures using the finite element methodPasa Dutra, Vanessa Fátima January 2007 (has links)
O concreto é um material que possui grande versatilidade de aplicação em construções e, desde a sua criação, vem sofrendo significativas modificações tanto na sua forma de produção e aplicação, quanto na sua composição. A razão para estas constantes modificações é a busca permanente do aperfeiçoamento das propriedades do concreto, ampliando ainda mais o seu espectro de utilização. Neste contexto e, visando principalmente melhorar o seu comportamento frágil perante esforços de tração, a adição de diferentes tipos de fibras surgiu como uma alternativa bastante promissora. Assim, fibras dispersas e concreto passam a formar, juntos, um material compósito, o qual, segundo verificações experimentais, pode trazer benefícios significativos às construções sob o ponto de vista estrutural. Este é o caso do concreto reforçado com fibras de aço (CRFA), em cujos ensaios foram observados aumentos importantes de resistência à tração e à compressão biaxial com o incremento da quantidade de fibras adicionadas. Visando uma análise mais profunda deste material, o presente trabalho tem por objetivo o estudo de peças de CRFA através da análise numérica tridimensional via Método dos Elementos Finitos. Para tanto, foi desenvolvido um programa computacional, em linguagem FORTRAN 90/95, com o intuito de modelar o comportamento de estruturas executadas com este material. Com base em estudos anteriores, foi implementado no programa um modelo constitutivo capaz de simular o comportamento do concreto com a presença das fibras. A representação do comportamento dos materiais foi feita através de um modelo elastoplástico, sendo analisadas estruturas sob condições de carregamento estático de curta duração. Especificamente para a determinação do comportamento do concreto com fibras, utilizou-se uma variante da superfície de ruptura de Willam-Warnke que considera a presença das fibras através da alteração do seu meridiano de tração. Além disso, a fissuração do concreto foi representada pelo modelo de fissuras distribuídas, que leva em consideração a contribuição da matriz entre fissuras. Dados experimentais disponíveis na literatura são apresentados para efeito de comparação com os resultados obtidos através do programa computacional desenvolvido. Observou-se que o modelo matemático e a metodologia numérica empregados forneceram resultados bastante próximos aos experimentais, validando, desta forma, a modelagem do CRFA realizada neste estudo através de alterações nas propriedades do concreto em função da presença das fibras. / Concrete is a material of great versatility of application in constructions and, since its invention, it has been experimenting significant changes in its form of production and application as well as on its composition. The reason for these continued changes is a permanent search for improvement in concrete’s properties, to widen even more its spectrum of use. In this context, and targeting mainly the improvement of its fragile behavior under tension, the addition of different types of fibers came up as a promising alternative. In this way, disperse fibers and concrete form, together, a composite material that, according to experimental investigations, can bring significant contributions to constructions under a structural standpoint. This is the case of the steel fiber reinforced concrete (SFRC), in whose tests important tensile and biaxial compression strength increases were observed with the increment of the fiber quantity added. Aiming a deeper analysis of this material, the present work has the objective of studying SFRC elements through numerical analyses based on the Finite Element Method. For in such a way, a computational program has been developed in FORTRAN 90/95 language aiming the modeling of the behavior of structures made with this material. On the basis of previous studies, a constitutive model, capable of adequately simulate the behavior of SFRC, was implemented. The representation of the behavior of the materials was carried out through an elastoplastic model and structures under short duration loading conditions were analyzed. Specifically for the determination of the behavior of the concrete with fibers, a variant of the Willam-Warnke rupture surface has been used, which considers the fibers presence through modifications of its tension meridian. Additionally, the concrete cracking was represented in the program by the smeared cracking model, which takes into consideration the contribution of the matrix between cracks. Experimental data available in the literature are compared to the results obtained with the developed computational program. It is observed that the used mathematical model and numerical methodology give results that are quite close to the available experimental data, validating, in this way, the SFRC modeling implemented.
|
120 |
Aparatos de baixo custo para ensaios biaxiais em concretos reforçados com fibras de aço / Low cost apparatuses for biaxial tests on steel fiber reinforced concretesPeres, Maria Vânia Nogueira do Nascimento January 2008 (has links)
Nas últimas décadas, a utilização de fibras de aço no reforço de elementos de concreto tem aumentado significativamente no cenário nacional e mesmo internacional, pois esta utilização melhora em muito as propriedades do material resultante, reduzindo sua fragilidade característica perante esforços de tração. Embora muito se conheça a respeito do comportamento de concretos reforçados com fibras sob solicitações uniaxiais, é sempre desejável que se possa prever adequadamente um comportamento mais amplo dos elementos feitos com tais materiais. Sendo assim, uma das soluções práticas para este tipo de questão seria a realização de ensaios sob solicitações biaxiais. No entanto, este tipo de análise se torna inviável em muitos casos, devido à falta de equipamentos adequados para sua realização. Assim, buscando-se colaborar com um melhor conhecimento dos concretos reforçados com fibras, o presente trabalho procurou desenvolver aparatos de ensaio de baixo custo capazes de solicitar corpos-de-prova em duas direções ortogonais. O comportamento do concreto reforçado com frações volumétricas de 0,5%, 1,0% e 1,5% de fibra foi, desta forma, avaliado a partir das seguintes proporções entre as tensões principais: ơ 2/ ơ 1 = 0/-1; ơ 2/ ơ 1 = -0,2/-1; ơ2 / ơ 1 = -0,5/-1; ơ 2/ ơ 1 = -1/-1. A partir das informações de resistência última e das deformações específicas obtidas nos ensaios, foi possível traçar as curvas de ruptura e analisar os padrões de ruptura do concreto reforçado com fibras de aço. Como esperado, os resultados obtidos nos ensaios mostraram que, sob estados de tensões biaxiais, ocorreu um aumento da resistência última e da rigidez do concreto para todas as relações de tensão analisadas ( ơ2/ ơ 1 = 0/-1; ơ 2/ ơ 1 = -0,2/-1;ơ 2/ ơ 1 = -0,5/-1; ơ 2/ ơ 1 = -1/-1). O aumento da resistência última em compressão biaxial, quando comparado ao concreto sob compressão uniaxial, foi de aproximadamente 20% para o concreto simples e, devido à adição de fibra, foi de aproximadamente 95% para uma relação de tensão igual a ơ 2/ ơ 1 = -0,5/-1. / In the last decades, the use of steel fibers to reinforce concrete elements has been significantly increased in the national scenario and even internationally, since its usage considerably improves the resulting material’s properties, reducing its characteristic fragility under tension. Although much is already known about the behavior of fiber reinforced concretes under uniaxial forces, a better understanding of the behavior of elements made of such materials is always desired. Therefore, a practical solution for this kind of problem would be to undertake biaxial tests. Nevertheless, this type of analysis sometimes turns out to be unviable because of the lack of adequate equipment for its realization. In this way, in an attempt to contribute with a better understanding of the fiber reinforced concretes, the present work tried to develop low-cost apparatuses capable of orthogonally loading specimens in two directions. The behavior of concrete reinforced with fiber volumetric fractions of 0.5%, 1.0%, and 1.5% was, therefore, evaluated under the following principal stresses’ proportions: ơ 2/ ơ 1 = ơ/-1;ơ 2/ ơ 1 = -0.2/-1; ơ 2/ơ 1 = -0.5/-1; ơ 2/ ơ 1 = -1/-1. From the ultimate strength values and from the obtained strains in the carried out tests, the rupture curves were possible to be plot, and the rupture modes and patterns of the fiber reinforced concretes were possible to be analyzed. As expected, the obtained results in the tests showed that, under biaxial stress states, an increase in ultimate strengths and stiffness of concretes for all the stress relations analyzed occurred ( ơ 2/ ơ 1 = 0/-1; ơ 2/ơ 1 = -0,2/-1; ơ 2/ ơ 1 = -0,5/-1; ơ 2/ ơ 1 = -1/-1). The increase in the ultimate strength in biaxial compression, when compared with concrete under uniaxial compression, was of about 20% for plain concrete and, due to the addition of fibers, about 95% for a stress relation equals to ơ 2/ ơ 1 = -0.5/-1.
|
Page generated in 0.0795 seconds