• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 54
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 224
  • 224
  • 224
  • 58
  • 57
  • 53
  • 52
  • 42
  • 36
  • 34
  • 32
  • 30
  • 30
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Structural Performance of High-Strength Reinforced Concrete Beams Built with Synthetic Fibers

Bastami, Roukaya 16 December 2019 (has links)
This thesis presents the results of a research program examining the effects of macro-synthetic fibers on the shear and flexural behaviour of high-strength concrete (HSC) beams subjected to static and blast loads. As part of the study, a series of seventeen fiber-reinforced HSC beams are built and tested under either quasi-static four-point bending or simulated blast loads using a shock-tube. The investigated test parameters include the effects of: macro-synthetic fibers, fiber hybridization, combined use of fibers and stirrups and longitudinal steel ratio and type. The results show that under slowly applied loads, the provision of synthetic fibers improves the shear capacity of the beams by allowing for the development of yield stresses in the longitudinal reinforcement, while the combined use of synthetic fibers and stirrups is found to improve flexural ductility and cracking behaviour. The results also show that the provision of synthetic fibers delays shear failure in beams tested under blast pressures, with improved control of blast-induced displacements and increased damage tolerance in beams designed with combined fibers and stirrups. The study also shows that the use of hybrid fibers was capable of effectively replacing transverse reinforcement under both loading types, allowing for ductile flexural failure. Moreover, the use of synthetic fibers was effective in better controlling crushing and spalling in beams designed with Grade 690 MPa high-strength reinforcement. Furthermore, the results demonstrate that synthetic fibers can possibly be used to relax the stringent detailing required by modern blast codes by increasing the transverse reinforcement hoop spacing without compromising performance. As part of the analytical study, the load-deflection responses (resistance functions) of the beams are predicted using sectional (moment-curvature) analysis, as well as more advanced 2D finite element modelling. Dynamic resistance functions developed using both approaches, and incorporating material strain-rate effects, are then used to conduct non-linear single-degree-of-freedom (SDOF) analyses of the blast-tested beams. In general, the results show that both methods resulted in reasonably accurate predictions of the static and dynamic experimental results.
132

EVALUATING THE SELF HEALING BEHAVIOR OF THE FIBER-REINFORCED CEMENTITIOUS COMPOSITE INCORPORATING THE INTERNAL CURING AGENTS

Cihang Huang (9179918) 30 July 2020 (has links)
<div> <p>The formation of the cracks in concrete materials can shorten the service life of the structure by exposing the steel rebar to the aggressive substances from the external environment. Self-healing concrete can eliminate the crack automatically, which has the potential to replace manual rehabilitation and repairing work. This thesis intends to develop a self-healing fiber-reinforced cementitious composite by the use of internal curing agents, such as lightweight aggregate, zeolite and superabsorbent polymer (SAP). This study has evaluated the crack width control ability of three different types of fiber, polyvinyl alcohol fiber (PVA), Masterfiber Mac Matrix and Strux 90/40 fiber. Mechanical performance and flexural stress-strain behavior of the fiber-reinforced cementitious composite were tested and compared. In order to investigate the feasibility of using internal curing aggregate to enhance autogenous healing performance, two types of porous aggregates, zeolite and lightweight aggregate (LWA), were used as internal curing agents to provide water for the autogenous healing. The pore structure of the zeolite and lightweight aggregate was examined by the scanning electron microscopy (SEM). Two replacement ratios of sand with internal curing aggregates were designed and the healing efficiency was evaluated by the resonant frequency measurement and the optical microscopic observation. To further understand the influence of the internal curing on the designed material, water retention behavior of the bulk sample and the internal curing aggregates was evaluated. Moreover, to study the self-sealing effect of the superabsorbent polymer (SAP), the robustness of the SAP under various environmental conditions was first evaluated. The influence of the superplasticizer, hydration accelerator and fly ash on the absorption behavior of the SAP was investigated by the filtration test and void size analysis. Afterward, the self-sealing performance of the SAP in cement paste was evaluated by a water flow test.</p> <p>The evaluation of three types of fiber indicated that the use of PVA fiber could produce a cementitious composite with stronger mechanical strength and crack width control ability. The result of the autogenous healing evaluation showed that the incorporation of the internal curing aggregates increased the self-healing recovery ratio from 12.6% to over 18%. The internal curing aggregate could absorb and store water during the wet curing and release it when the external water supply is unavailable. The comparison between the two types of internal curing aggregates indicated that finer pores in the internal curing aggregate can lead to a slower water release rate that is capable of continuously supplying water for the autogenous healing. In addition, the SAP was proved to be robust when various content of the additives and fly ash were used. And the self-sealing effect of the SAP is found to be effective in regaining the water tightness of cement paste. The result of this thesis can assist in the design of the fiber-reinforced cementitious composite with self-healing performance in civil engineering.</p> </div> <br>
133

Développement d'un outil numérique pour la prévision de la fissuration d’une structure en béton de fibres sous impact. / Development of a numerical tool for predicting the cracking of a fibre reinforced concrete structure under impact.

Akiki, Rana 06 December 2017 (has links)
Ce travail de recherche s'inscrit dans le cadre de la sécurité du transport et de manutention des colis de confinement de déchets nucléaires. Le but est de développer un outil numérique capable de simuler le comportement global d'une structure en béton de fibres soumise à des sollicitations dynamiques. Il permet également d'accéder à des informations plus locales telle que la fissuration, tant en terme de trajet que d'ouverture de fissures. Pour ce faire, un ensemble d'essais mécaniques est réalisé afin de mieux comprendre les mécanismes d'endommagement et de fissuration du matériau sous sollicitations quasi-statique et dynamique. Le modèle capable de capturer à l'échelle globale les non-linéarités liées à la fissuration de la structure dans un cadre continu est détaillé. Les paramètres associés à la loi de comportement sont identifiés via une procédure d'identification basée sur les données expérimentales des essais conduits. La détermination de l'énergie de fissuration en dynamique est investiguée et la part inertielle structurelle de celle-ci est soulignée. Deux méthodes de post-traitement numérique des résultats des simulations numériques globales permettant d'accéder à des informations plus fines à l'échelle locale, en termes de trajet et d'ouverture de fissure, sont détaillées. Une étude d'une poutre en béton fibré soumis à un chargement de flexion 1-point dynamique post-traitée avec les deux approches est présentée. Les résultats du post-traitement numérique sont comparés à ceux obtenus expérimentalement par corrélation d'images numériques. / The research work falls within the framework of the transportation and handling safety of radioactive waste containment packages. The goal is to develop a numerical tool capable of simulating the overall behaviour of a fiber concrete structure subject to a dynamic loading. It also gives access to more local information such as cracking, both in terms of path and opening. To do this, a set of mechanical tests is carried out in order to better understand the mechanisms of damage and cracking of the material under quasi-static and dynamic loading. The model capable of capturing on a global scale the non-linearities related to the cracking of the structure in a continuous framework is detailed. The parameters associated with the material constitutive law are identified via an identification procedure based on the experimental data of the conducted tests. The determination of dynamic cracking energy is investigated and the structural inertial part of this is underlined. Two numerical methods used to post-process the results of the global numerical simulations, giving access to finer information at the local scale, in terms of path and crack opening, are detailed. The study of a fiber-reinforced concrete beam subjected to a dynamic 1-point bending loading, post-processed with the two approaches, is presented. The results of the numerical post-processing are compared with those obtained experimentally by correlation of digital images.
134

Experimental Investigation of Fiber Reinforced Concrete Beams

Al-lami, Karrar Ali 01 June 2015 (has links)
Shear strength of fiber reinforced concrete beams was studied in this research project. Three types of fibers were examined: hooked-end steel fiber, crimped-steel fiber, and crimped-monofilament polypropylene fibers. The experimental program included five beam specimens. Two of the beams were control specimens in which one was reinforced with minimum shear reinforcement according to ACI 318, while the other one did not have any shear reinforcement. Each one of the other three specimens was reinforced with one of the above mentioned fibers by 1% volumetric ratio. In addition to the beam specimens, three prisms were also made for each type fiber to determine their toughness. The aim of this research was to investigate the following questions for medium-high concrete strength 1) to evaluate the effectiveness of each type of fibers on the shear strength, 2) to investigate the shear strength, toughness, crack patterns and near ultimate load crack width of each beam, and 3) to determine if using 1% volumetric ratio of fibers as shear reinforcement in beams would provide adequate strength and stiffness properties comparable to reinforcing steel used as minimum shear reinforcement. The results showed that all three types of fibers increased the shear capacity of the beam specimens more than the beam reinforced with minimum shear reinforcement. Moreover, some of the fibers used could shift the type of failure from a pure shear failure to a combined flexural-shear or pure flexural failure.
135

Evaluation of Concrete Bridge Decks Comprising Twisted Steel Micro Rebar

Hebdon, Aubrey Lynne 12 March 2021 (has links)
The objective of this research was to investigate the effects of twisted steel micro rebar (TSMR) fibers on 1) the mechanical properties of concrete used in bridge deck construction and 2) the early cracking behavior of concrete bridge decks. This research involved the evaluation of four newly constructed bridge decks through a series of laboratory and field tests. At each location, one deck was constructed using a conventional concrete mixture without TSMR, and one was constructed using the same conventional concrete mixture with an addition of 40 lb of TSMR per cubic yard of concrete. Regarding laboratory testing, the conventional and TSMR beam specimens exhibited similar average changes in height after 4 months of shrinkage testing. The electrical impedance measurements did not indicate a notable difference between specimens comprising concrete with TSMR and those comprising conventional concrete. Although no notable difference in behavior between conventional and TSMR specimens was apparent before initial cracking, the toughness of the TSMR specimens was substantially greater than that of the conventional concrete specimens. Regarding field testing, sensors installed in the bridge decks indicated that the addition of TSMR does not affect internal concrete temperature, moisture content, or electrical conductivity. The average Schmidt rebound number varied little between the TSMR decks and conventional decks; therefore, the stiffness of the TSMR concrete was very similar to that of conventional concrete. Distress surveys showed that the conventional decks exhibited notably more cracking than the TSMR decks. The TSMR fibers exhibited the ability to limit both crack density and crack width. For all of the decks, chloride concentrations increased every year as a result of the use of deicing salts on the bridge decks during winter. However, the chloride concentrations for samples collected over cracked concrete increased more rapidly than those for samples collected over non-cracked concrete. Although TSMR fibers themselves do not directly affect the rate at which chloride ions penetrated cracked or non-cracked concrete, the fibers do prevent cracking, which, in turn, limits the penetration of chloride ions into the decks. Therefore, the use of TSMR would be expected to decrease the area of a bridge deck affected by cracking and subsequent chloride-induced corrosion damage and thereby increase the service life of the bridge deck.
136

[pt] CONCRETO REFORÇADO COM FIBRAS DE PVA APLICADO A PAVIMENTOS AEROPORTUÁRIOS: PROPRIEDADES MECÂNICAS E DIMENSIONAMENTO / [en] PVA FIBER REINFORCED CONCRETE APPLIED TO AIRPORT PAVEMENTS: MECHANICAL PROPERTIES AND DESIGN

FELIPE RODRIGUES DE SOUZA 27 December 2021 (has links)
[pt] O presente trabalho tem como foco a caracterização do concreto reforçado com fibras de álcool polivinílico (CRFPVA) com diferentes frações volumétricas para utilização como pavimento aeroportuário. Para isso foram determinados os parâmetros como resistência residual e tenacidade dos compósitos através de ensaios de flexão em três pontos definidos pela norma EN 14651 para serem aplicados no dimensionamento de lajes apoiadas em base elástica, proposto pela TR-34 e comparar estes resultados ao dimensionamento e a ensaios do pavimento de concreto de cimento Portland convencional regulamentado pela Federal Aviation Administration (FAA), através da circular AC150/5320-6F. Também foram utilizadas fibras de polipropileno, que são amplamente empregadas na construção de pisos industriais, para comparação com os CRFPVA. Os CRF apresentaram comportamento deflection softening e, acréscimo de tensões pós fissuração e tenacidade com o aumento da fração volumétrica de fibras. Ensaios de flexão cíclicos foram realizados mostrando que para carregamentos de até 70% da carga de primeira fissura, para corpos de prova não fissurados ou, 70% da carga em CMOD1 para corpos de prova pré-fissurados, combinados com 100 mil ciclos, há pouco ou nenhum dano aparente para os CRF. Finalmente, os ensaios estruturais em lajes sobre apoio elástico apresentaram com a adição de fibras, ganhos de até 2,8 vezes no valor da carga de primeira fissura comparado ao concreto convencional, além de redução das deformações e da fissuração das lajes, mostrando o CRF como uma alternativa para a aplicação em pavimentos aeroportuários. / [en] The present work focuses on the characterization of polyvinyl alcohol fiber reinforced concrete (PVA-FRC) with different volume content to be applied as airport pavement. The parameters that characterize the FRC were obtained through three point bending tests defined by EN 14651 and were applied in the slabs on ground design as proposed by TR-34. The results were compared to the design and tests of the plain Portland cement concrete pavement regulated by the Federal Aviation Administration (FAA) advisory circular AC150/5320-6F. Polypropylene fiber reinforced concrete (PP-FRC), which are widely used in industrial floor design and construction, were also tested for comparison. The FRC showed a deflection softening behavior improving the post-cracking strength and toughness values with the increase in the fiber content. Cyclic bending tests were performed with noncracked and pre-cracked specimens with 70 per cent of the first crack load and 70 per cent of the CMOD1 load respectively for 100k cycles. These tests showed little or no damage to the FRC samples compared to the monotonic bending tests. Finally, the structural scale tests on slabs on ground showed that with the fiber addition, the value of the load at first crack is improved up to 2.8 times compared to the plain concrete slab and also reduced deflection and displacement are seen, indicating that he PVAFRC, and also the PP-FRC are suitable to be used as airport pavement.
137

[en] MESOSCALE MODELLING OF DAMAGE AND FRACTURE OF FIBER REINFORCED CONCRETE / [pt] MODELAGEM MESOESCALA DO DANO E FRATURA EM CONCRETO REFORÇADO COM FIBRAS

LUIS FELIPE DOS SANTOS RIBEIRO 12 May 2022 (has links)
[pt] Compósitos cimentícios estão ganhando cada vez mais relevância na indústria da construção civil. No entanto, as diretrizes para o projeto do material compósito e dos seus elementos estruturais são ainda incipientes, pois mecanismos de ponte de transferência de forças providos pelas fibras ainda estão sob investigação. Este trabalho apresenta uma estratégia de modelagem de elementos finitos que leva em consideração a estrutura de nível mesoestrutural do material cimentício reforçado com fibras. Desta forma, quatro fases do material são consideradas no modelo numérico: agregados graúdos, argamassa, zona de transição interfacial (ZTI) e fibras. A argamassa e os agregados são modelados usando elementos contínuos triangulares com comportamento linear-elástico. As fibras são incluídas usando elementos de treliça unidimensionais acopladas a elementos bidimensionais contínuos. Uma técnica de fragmentação de malha é usada para introduzir elementos de interface nas arestas dos elementos de argamassa e na interface entre agregados e argamassa para representar a ZTI. O método Take-and-Place, proposto por Wriggers e Moftah (2006), foi adotado neste estudo para incluir agregados no modelo. Primeiro, os agregados são gerados seguindo uma curva de Fuller, que define um empacotamento entre os agregados perfeitos. Na segunda fase, os agregados são introduzidos no modelo garantindo a não sobreposição entre eles. Finalmente, as fibras são adicionadas. Para validar a metodologia proposta, testes experimentais foram simulados com sucesso em um framework de simulação numérica – GeMA. Por fim, o trabalho explora a influência do empacotamento fibra-agregado na resposta mecânica e nos padrões de fraturamento de compósitos cimentícios fibrosos. / [en] Fiber Reinforced Concrete (FRC) materials are gaining more relevance in the construction industry. However, the guidelines for the design of the composite material and of structural elements thereof are incipient and the stress bridging mechanisms are still under investigation. This work presents a finite element modelling strategy that takes into account the material meso-level structure. Four phases of the FRC material are considered in the model: coarse aggregates, mortar, interfacial transition zone (ITZ), and fibers. The mortar and aggregates are modelled using triangular linear elements with linear–elastic behavior. Fibers are included using one-dimensional truss elements which are coupled to the matrix through the technique proposed by Congro (2021). Zero-thickness interface elements are introduced at the interface between mortar elements, and at the interface between aggregates and mortar to represent the ITZ. The Take-and-Place method, obtained from Wriggers and Moftah (2006), was adopted in this study to include aggregates in the model. First, the aggregates are generated following a Fuller s curve that means a perfect aggregate package. In the second phase, the aggregates are placed in the model without overlapping. Finally, fibers were added. A mesh fragmentation technique is used to introduced zero-thickness interface elements at the interface between mortar elements, and at the interface between aggregates and mortar to represent the ITZ. To validate the proposed methodology, direct tensile test models were successfully reproduced in finite element analyses performed in an in-house framework – GeMA. Based on the obtained results, the authors could explore the influence of the fibers-aggregate packing in the mechanical response of the composite material.
138

Rheological and mechanical development of a fiber-reinforced concrete for an application in civil engineering

Funke, Henrik L., Gelbrich, Sandra, Ehrlich, Andreas, Kroll, Lothar 28 August 2015 (has links) (PDF)
In the course of revitalizing the Poseidon Building in Frankfurt, an energetically optimized façade, made of an architectural concrete was developed. The development of a fiber-reinforced architectural concrete had to consider the necessary mechanical strength, design technology and surface quality. The fiber-reinforced architectural concrete has a compressive strength of 104.1 MPa and a 3-point bending tensile strength of 19.5 MPa. Beyond that, it was ensured that the fiber-reinforced high-performance concrete had a high durability, which has been shown by the capillary suction of de-icing solution and freeze thaw test with a weathering of abrasion of 113 g/m² after 28 freeze-thaw cycles and a mean water penetration depth of 11 mm.
139

Matrix manipulation to study ECC behaviour

Song, Gao 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2005. / 192 leaves on CD format, preliminary i-xii pages and numbered pages 1-135. Includes bibliography, list of figures and tables. / ENGLISH ABSTRACT: As a fibre reinforced material, engineered cementitious composite (ECC) has tough, strain-hardening behaviour in tension despite containing low volumes of fibres. This property can be brought about by developments in fibre, matrix and interfacial properties. Poly Vinyl Alcohol (PVA) fibre has been developed in recent years for ECC, due to its high tensile strength and elasticity modulus. However, the strong interfacial bond between fibre surface and matrix is a challenge for its application. This study focuses on the tailoring of matrix and fibre/matrix interfacial properties by cement replacement with fly ash (FA) and Ground Granulated Corex Slagment (GGCS). In this study the direct tensile test, three point bending test, micro-scale analysis, such as X-Ray Fluorescence Spectrometry analysis (XRF), Scanning Electron Microscope (SEM), are employed to investigate the influence of cement replacement, aging, Water/Binder (W/B) ratio, workability on ECC behaviour. This study has successfully achieved the aim that cement replacement by FA and GGCS helps to improve the fibre/matrix interfacial properties and therefore enhances the ECC tensile behaviour. Specifically, a high volume FA-ECC has stable high tensile strain capacity at the age of 21 days. This enables a constant matrix design for the investigation of other matrix influences. The Slag-ECC has a higher tensile strength but lower tensile strain capacity. The combination of FA and GGCS, moderate tensile strength and strain capacity is achieved Both tensile tests and Micro-scale analyses infer that the high volume FA-ECC has an adhesive type fibre/matrix interfacial interaction, as opposed to the cohesive type of normal PVA fibre-ECC. The different tensile behaviour trend of steel fibre-ECC and PVA fibre-ECC with the FA content is presented and discussed in this research. The investigations of aging influence indicate that the high volume FA-ECC has a beneficial effect on the properties of the composite at an early stage. However, at a high age, it has some difficulty to undergo multiple cracking and then leads to the reduction of tensile strain capacity. The modified mix design is made with the combination of FA and GGCS, which successfully increases the interfacial bond and, thereby, improves the shear transfer to reach the matrix crack strength. Therefore, an improved high age tensile behaviour is achieved. The W/B and fresh state workability influence investigations show that the W/B can hardly affect the tensile strain at early age. However, the workability influences on composite tensile strain significantly, because of the influence on fibre dispersion. Other investigations with regard to the hybrid fibre influences, the comparison of bending behaviours between extruded plate and cast plate, the relation between bending MOR and tensile stress, and the relation between compression strength and tensile strength contribute to understand ECC behaviour. / AFRIKAANSE OPSOMMING: As ‘n veselversterkte materiaal, het ontwerpte sementbasis saamgestelde materiale, taai vervormingsverhardingseienskappe in trek, ten spyte van lae veselinhoud. Hierdie eienskap word bewerkstellig, deur ontwikkelings in vesel, matriks en tussenveselbindingseienskappe. Poli-Viniel Alkohol (PVA) vesels is ontwikkel vir ECC, as gevolg van die hoë trekkrag en hoë modulus van hierdie veseltipe. Die sterk binding tussen die PVA-veseloppervlak en die matriks is egter ‘n uitdaging vir sy toepassing. Hierdie studie fokus op die skep van gunstige matriks en vesel/matriks tussenvesel-bindingseienskappe deur sement te vervang met vlieg-as (FA) en slagment (GGCS).In hierdie navorsing is direkte trek-toetse, drie-punt-buigtoetse, mikro-skaal analise (soos die X-straal ‘Fluorescence Spectrometry’ analise (XRF) en Skanderende Elektron Mikroskoop (SEM))toegepas. Hierdie metodes is gebruik om die invloed van sementvervanging,veroudering, water/binder (W/B)-verhouding en werkbaarheid op die meganiese gedrag van ECC te ondersoek.Die resultate van hierdie navorsing toon dat sementvervanging deur FA en GGCS help om die vesel/matriks tussenveselbindingseienskappe te verbeter. Dus is die ECC-trekgedrag ook verbeter. Veral ‘n hoë volume FA-ECC het stabiele hoë trekvervormingskapasiteit op ‘n ouderdom van 21 dae. Dit bewerkstellig ‘n konstante matriksontwerp vir die navorsing van ander matriks invloede. Die Slag-ECC het ‘n hoër treksterkte, maar laer trekvervormingskapasiteit. Deur die kombinasie van FA en GGCS word hoë treksterkte, sowel as gematigde vervormbaarheid in trek verkry. Beide trektoetse en mikro-skaal analise dui aan dat die hoë volume FA-ECC ‘n adhesie-tipe vesel/matriks tussenvesel-bindingsinteraksie het, teenoor die ‘kohesie-tipe van normale PVA vesel-ECC. Die verskille in trekgedrag van staalvesel-ECC en PVA vesel-ECC ten opsigte van die FA-inhoud is ondersoek en word bespreek in die navorsing. Die navorsing toon verder dat die hoë volume FA-ECC goeie meganiese eienskappe het op ‘n vroeë ouderdom. Op hoër ouderdom word minder krake gevorm, wat ‘n verlaging in die trekvervormingskapasiteit tot gevolg het. Met die kombinasie van FA en GGCS, word die vesel-matriksverband verhoog, waardeur ‘n verbetering in die skuifoordrag tussen vesel en matriks plaasvind. Verbeterde hoë omeganiese gedrag word daardeur tot stand gebring. Navorsing ten opsigte van die invoed van die W/B en werkbaarheid dui daarop dat die W/B slegs geringe invloed het op die trekvormbaarheid, terwyl die werkbaarheid ‘n dominerende rol speel in hierdie verband.Verdere studies sluit in die invloed van verskillende vesels, die vergelyking van die buigingsgedrag van geëkstueerde plate en gegote plate, die verhouding tussen buigsterkte en treksterkte, en die verhouding tussen druksterkte en treksterkte dra by tot beter begrip van die gedrag van ECC.
140

A Fiber-Reinforced Architectural Concrete for the Newly Designed Façade of the Poseidon Building in Frankfurt am Main

Funke, Henrik L., Gelbrich, Sandra, Ehrlich, Andreas, Kroll, Lothar 08 July 2014 (has links) (PDF)
In the course of revitalizing the Poseidon Building in Frankfurt, an energetically optimized façade, made of architectural concrete was developed. The development of a fiber-reinforced architectural concrete had to consider the necessary mechanical strength, design technology and surface quality. The fiber-reinforced architectural concrete has a compressive strength of 104.1 MPa and a 3-point bending tensile strength of 19.5 MPa. Beyond that, it was ensured that the fiber-reinforced high-performance concrete had a high durability, which has been shown by the capillary suction of de-icing solution and freeze thaw test with a weathering of abrasion of 113 g/m² after 28 freeze-thaw cycles and a mean water penetration depth of 11 mm.

Page generated in 0.0628 seconds