• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelamento do fenômeno de abertura e fechamento de trincas em fadiga pelo método dos elementos finitos. / Modeling fatigue crack opening and closing phenomenon by finite element method.

Ricardo, Luiz Carlos Hernandes 25 November 2003 (has links)
O trabalho apresenta uma metodologia para a simulação de abertura e fechamento de trinca, durante o processo de propagação, utilizando um programa comercial de elementos finitos. Este programa é utilizado para determinar os fatores de intensidade de tensão de abertura e fechamento de trinca. É apresentado o modelo de Newman que serve de embasamento para o desenvolvimento da metodologia de liberação de nós na carga mínima, utilizada no trabalho para a propagação da trinca. São avaliados quatro tipos de corpos de prova SE-(B) (corpo de prova de três pontos de apoio submetido a flexão), SE-(T)(corpo de prova com trinca lateral submetido a tração), M-(T) (corpo de prova com trinca central submetido a tração) de uma liga de alumínio Al 2024-T351 e um aço bifásico ( ferrita + martensita). Um corpo de prova do tipo C-(T) (corpo de prova compacto submetido a tração) de aço bifásico também foi avaliado. Os corpos de prova SE-(B), SE-(T) e M-(T) da liga de alumínio Al 2024-T351 foram submetidos a carregamentos de amplitude constante, com razões de carga R = 0 e R = 0,5. Os resultados das análises são comparados com resultados do código FASTRAN, principal código numérico utilizado para simular abertura e fechamento de trinca por plasticidade induzida, através de uma normalização dos fatores de intensidade de tensão máxima e de abertura da trinca. Os resultados numéricos com o corpo de prova C-(T) submetido a carregamento de amplitude constante, com razão de carga R = 0,1 foram comparados com resultados de ensaio, objetivando validar o fator de intensidade de fechamento de trinca obtido através da análise numérica. Essa comparação é feita através de normalização numérica e experimental do fator de intensidade de tensão de fechamento de trinca com o fator de intensidade de tensão máxima. A metodologia de simulação de propagação de trincas, já aplicada na industria aeronáutica, pode ser aplicada em outras áreas como, por exemplo, na indústria automotiva, uma vez que o consumidor está cada vez mais exigente e o desenvolvimento de novos critérios de projeto se faz necessário. / The work introduces a methodology to simulate fatigue crack opening and closing during crack propagation, using a commercial finite element code. This code is used to determine the crack opening and closure stress intensity factors. The Newman model is used as a baseline to develop the methodology. The nodes are released at the minimum load, during the crack propagation process. Four kinds of specimens SE-(T) ( Single Edge Tension), SE-(B) ( Single Edge Bending), M-(T) ( Middle Tension) of the an aluminum alloy Al–2024-T351 and a dual phase steel (ferrite + martensite) were evaluated. A compact tension specimen C-(T) of a dual phase steel was evaluated. The aluminum alloy specimens, SE -(T), SE-(B) and M-(T), were evaluated under constant amplitude loading with load ratios R = 0 and R = 0.5. The results of these analyses are compared with the results of FASTRAN, principal numerical code used to simulate crack opening and closing plasticity induced by, normalizing the opening stress intensity factor. The numerical results from a C-(T) specimen, under constant amplitude loading and a load ratio R = 0.1, were compared with results from a test performed in the laboratory. The numerical and experimental closure stress intensity factors are normalized with the maximum stress intensity factor. Crack closure simulations are currently used in the aircraft industry. They are now being incorporated in same automotive and other ground vehicle fatigue analysis procedures.
2

The Introduction of Crack Opening Stress Modeling into Strain-Life and Small Crack Growth Fatigue Analysis

El-Zeghayar, Maria January 2011 (has links)
The work in this thesis is concerned with the mechanics of the initiation and growth of small fatigue cracks from notches under service load histories. Fatigue life estimates for components subjected to variable amplitude service loading are usually based on the same constant amplitude strain-life data used for constant amplitude fatigue life predictions. The resulting fatigue life estimates although they are accurate for constant amplitude fatigue, are always non conservative for variable amplitude load histories. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non conservative when constant amplitude crack growth data are used. These non conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history. Smaller load cycles following a large near yield stress overload or underload cycle experience a much lower crack opening stress than that experienced by the same cycles in the reference constant amplitude fatigue tests used to produce design data. This reduced crack opening stress results in the crack remaining open for a larger fraction of the stress-strain cycle and thus an increase in the effective portion of the stress-strain cycle. The effective strain range is increased and the fatigue damage for the small cycles is greater than that calculated resulting in a non conservative fatigue life prediction. Previous work at Waterloo introduced parameters based on effective strain-life fatigue data and effective stress intensity versus crack growth rate data. Fatigue life calculations using these parameters combined with experimentally derived crack opening stress estimates give accurate fatigue life predictions for notched components subjected to variable amplitude service load histories. Information concerning steady state crack closure stresses, effective strain-life data, and effective stress intensity versus small crack growth rate data, are all obtained from relatively simple and inexpensive fatigue tests of smooth specimens in which periodic underloads are inserted into an otherwise constant amplitude load history. The data required to calibrate a variable amplitude fatigue crack closure model however, come from time consuming measurements of the return of crack closure levels for small cracks to a steady state level following an underload (large cracks for which crack closure measurements are easier to make cannot be used because at the high stress levels in notches under service loads a test specimen used would fracture). For low and moderately high hardness levels in metals crack growth and crack opening stress measurements have been made using a 900x optical microscope for the small crack length at which a test specimen can resist the high stress levels encountered when small cracks grow from notches. For very hard metals the crack sizes may be so small that the measurements must be made using a confocal scanning laser microscope. In this case the specimen must be removed from the test machine for each measurement and the time to acquire data is only practical for an extended research project. The parameters for the crack closure model relating to steady state crack closure levels vary with material cyclic deformation resistance which in turn increases with hardness. One previous investigation found that the steady state crack opening level was lower and the recovery to a steady state crack opening stress level after an underload was more rapid for a hard than for a soft metal. This observation can be explained by the dependence of the crack tip plastic zone size that determines crack tip deformation and closure level on metal hardness and yield strength. Further information regarding this hypothesis has been obtained in this thesis by testing three different steels of varying hardness levels (6 HRC, 35 HRC, and 60 HRC) including a very hard carburized steel having a hardness level (60 HRC) for which no crack opening stress data for small cracks had yet been obtained. This thesis introduced a new test procedure for obtaining data on the return of crack opening stress to a steady state level following an underload. Smooth specimens were tested under load histories with intermittent underload cycles. The frequency of occurrence of the underloads was varied and the changes in fatigue life observed. The changes in damage per block (the block consisted of an underload cycle followed by intermittent small cycles) were used to determine the value of the closure model parameter governing the recovery of the crack opening stress to its steady state level. Concurrent tests were carried out in which the crack opening stress recovery was measured directly on crack growth specimens using optical microscope measurements. These tests on metals ranging in hardness from soft to very hard were used to assess whether the new technique would produce good data for crack opening stress changes after underloads for all hardness levels. The results were also used to correlate crack closure model parameters with mechanical properties. This together with the steady state crack opening stress, effective strain-life data and the effective intensity versus crack growth rate data obtained from smooth specimen tests devised by previous researchers provided all the data required to calibrate the two models proposed in this investigation to perform strain-life and small crack growth fatigue analysis.
3

Characterization of delamination in silicon/epoxy systems

Gowrishankar, Shravan 23 June 2014 (has links)
Microelectronic devices are multilayered structures with many different interfaces. Their mechanical reliability is of utmost importance when considering the implementation of new materials. Linear elastic fracture mechanics (LEFM) is a common approach that has been used for interfacial fracture analyses in the microelectronics industry where the energy release rate parameter is considered to be the driving force for delamination and the failure criterion is established by comparing this with the interface toughness. However this approach has been unable to model crack-nucleation, which plays an important part in analyzing the mechanical reliability of chip-package systems. The cohesive interface modeling approach, which is considered here, has the capability to model crack nucleation and growth, provided interfacial parameters such as strength and toughness of the system are available. These parameters are obtained through the extraction of traction-separation relations, which can be obtained through indirect hybrid numerical/experimental methods or direct experimental methods. All methods of extracting traction-separation relations require some local feature of the crack-tip region to be measured. The focus in this doctoral work has been on the comparison of the two methods for a mode-I DCB experiment and on the development of a universal loading device to extract mixed-mode traction-separation relations at different mode-mix values. The techniques that have been adopted for the local measurements are infrared crack opening interferometry (IR-COI) and digital image correlation (DIC). Apart from the global measurements of load-displacement (P-[delta]), local crack-tip parameters were measured using IR-COI or DIC. The combination of global and local measurements gave the relations between the fracture driving force (energy release rate or J-integral, J) and crack opening displacements, which were used to obtain the local tractions. IR-COI is an extremely useful technique to image and measure local crack-tip parameters. However, as IR-COI is restricted to normal measurements, the loading device was configured to accommodate a DIC system in order to make both normal and tangential measurements. In addition to measurements, fracture surface characterization techniques such as atomic force microscopy (AFM), profilometry and X-ray photoelectron spectroscopy were used to observe the fracture mechanisms. / text
4

The Introduction of Crack Opening Stress Modeling into Strain-Life and Small Crack Growth Fatigue Analysis

El-Zeghayar, Maria January 2011 (has links)
The work in this thesis is concerned with the mechanics of the initiation and growth of small fatigue cracks from notches under service load histories. Fatigue life estimates for components subjected to variable amplitude service loading are usually based on the same constant amplitude strain-life data used for constant amplitude fatigue life predictions. The resulting fatigue life estimates although they are accurate for constant amplitude fatigue, are always non conservative for variable amplitude load histories. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non conservative when constant amplitude crack growth data are used. These non conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history. Smaller load cycles following a large near yield stress overload or underload cycle experience a much lower crack opening stress than that experienced by the same cycles in the reference constant amplitude fatigue tests used to produce design data. This reduced crack opening stress results in the crack remaining open for a larger fraction of the stress-strain cycle and thus an increase in the effective portion of the stress-strain cycle. The effective strain range is increased and the fatigue damage for the small cycles is greater than that calculated resulting in a non conservative fatigue life prediction. Previous work at Waterloo introduced parameters based on effective strain-life fatigue data and effective stress intensity versus crack growth rate data. Fatigue life calculations using these parameters combined with experimentally derived crack opening stress estimates give accurate fatigue life predictions for notched components subjected to variable amplitude service load histories. Information concerning steady state crack closure stresses, effective strain-life data, and effective stress intensity versus small crack growth rate data, are all obtained from relatively simple and inexpensive fatigue tests of smooth specimens in which periodic underloads are inserted into an otherwise constant amplitude load history. The data required to calibrate a variable amplitude fatigue crack closure model however, come from time consuming measurements of the return of crack closure levels for small cracks to a steady state level following an underload (large cracks for which crack closure measurements are easier to make cannot be used because at the high stress levels in notches under service loads a test specimen used would fracture). For low and moderately high hardness levels in metals crack growth and crack opening stress measurements have been made using a 900x optical microscope for the small crack length at which a test specimen can resist the high stress levels encountered when small cracks grow from notches. For very hard metals the crack sizes may be so small that the measurements must be made using a confocal scanning laser microscope. In this case the specimen must be removed from the test machine for each measurement and the time to acquire data is only practical for an extended research project. The parameters for the crack closure model relating to steady state crack closure levels vary with material cyclic deformation resistance which in turn increases with hardness. One previous investigation found that the steady state crack opening level was lower and the recovery to a steady state crack opening stress level after an underload was more rapid for a hard than for a soft metal. This observation can be explained by the dependence of the crack tip plastic zone size that determines crack tip deformation and closure level on metal hardness and yield strength. Further information regarding this hypothesis has been obtained in this thesis by testing three different steels of varying hardness levels (6 HRC, 35 HRC, and 60 HRC) including a very hard carburized steel having a hardness level (60 HRC) for which no crack opening stress data for small cracks had yet been obtained. This thesis introduced a new test procedure for obtaining data on the return of crack opening stress to a steady state level following an underload. Smooth specimens were tested under load histories with intermittent underload cycles. The frequency of occurrence of the underloads was varied and the changes in fatigue life observed. The changes in damage per block (the block consisted of an underload cycle followed by intermittent small cycles) were used to determine the value of the closure model parameter governing the recovery of the crack opening stress to its steady state level. Concurrent tests were carried out in which the crack opening stress recovery was measured directly on crack growth specimens using optical microscope measurements. These tests on metals ranging in hardness from soft to very hard were used to assess whether the new technique would produce good data for crack opening stress changes after underloads for all hardness levels. The results were also used to correlate crack closure model parameters with mechanical properties. This together with the steady state crack opening stress, effective strain-life data and the effective intensity versus crack growth rate data obtained from smooth specimen tests devised by previous researchers provided all the data required to calibrate the two models proposed in this investigation to perform strain-life and small crack growth fatigue analysis.
5

ねじり - 軸力負荷における鉄鋼薄肉円管試験片における円孔からの疲労き裂の伝ぱ挙動

田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki, 高橋, 晶広, TAKAHASHI, Akihiro, 御厨, 照明, MIKURIYA, Teruaki 06 1900 (has links)
No description available.
6

Modelamento do fenômeno de abertura e fechamento de trincas em fadiga pelo método dos elementos finitos. / Modeling fatigue crack opening and closing phenomenon by finite element method.

Luiz Carlos Hernandes Ricardo 25 November 2003 (has links)
O trabalho apresenta uma metodologia para a simulação de abertura e fechamento de trinca, durante o processo de propagação, utilizando um programa comercial de elementos finitos. Este programa é utilizado para determinar os fatores de intensidade de tensão de abertura e fechamento de trinca. É apresentado o modelo de Newman que serve de embasamento para o desenvolvimento da metodologia de liberação de nós na carga mínima, utilizada no trabalho para a propagação da trinca. São avaliados quatro tipos de corpos de prova SE-(B) (corpo de prova de três pontos de apoio submetido a flexão), SE-(T)(corpo de prova com trinca lateral submetido a tração), M-(T) (corpo de prova com trinca central submetido a tração) de uma liga de alumínio Al 2024-T351 e um aço bifásico ( ferrita + martensita). Um corpo de prova do tipo C-(T) (corpo de prova compacto submetido a tração) de aço bifásico também foi avaliado. Os corpos de prova SE-(B), SE-(T) e M-(T) da liga de alumínio Al 2024-T351 foram submetidos a carregamentos de amplitude constante, com razões de carga R = 0 e R = 0,5. Os resultados das análises são comparados com resultados do código FASTRAN, principal código numérico utilizado para simular abertura e fechamento de trinca por plasticidade induzida, através de uma normalização dos fatores de intensidade de tensão máxima e de abertura da trinca. Os resultados numéricos com o corpo de prova C-(T) submetido a carregamento de amplitude constante, com razão de carga R = 0,1 foram comparados com resultados de ensaio, objetivando validar o fator de intensidade de fechamento de trinca obtido através da análise numérica. Essa comparação é feita através de normalização numérica e experimental do fator de intensidade de tensão de fechamento de trinca com o fator de intensidade de tensão máxima. A metodologia de simulação de propagação de trincas, já aplicada na industria aeronáutica, pode ser aplicada em outras áreas como, por exemplo, na indústria automotiva, uma vez que o consumidor está cada vez mais exigente e o desenvolvimento de novos critérios de projeto se faz necessário. / The work introduces a methodology to simulate fatigue crack opening and closing during crack propagation, using a commercial finite element code. This code is used to determine the crack opening and closure stress intensity factors. The Newman model is used as a baseline to develop the methodology. The nodes are released at the minimum load, during the crack propagation process. Four kinds of specimens SE-(T) ( Single Edge Tension), SE-(B) ( Single Edge Bending), M-(T) ( Middle Tension) of the an aluminum alloy Al–2024-T351 and a dual phase steel (ferrite + martensite) were evaluated. A compact tension specimen C-(T) of a dual phase steel was evaluated. The aluminum alloy specimens, SE -(T), SE-(B) and M-(T), were evaluated under constant amplitude loading with load ratios R = 0 and R = 0.5. The results of these analyses are compared with the results of FASTRAN, principal numerical code used to simulate crack opening and closing plasticity induced by, normalizing the opening stress intensity factor. The numerical results from a C-(T) specimen, under constant amplitude loading and a load ratio R = 0.1, were compared with results from a test performed in the laboratory. The numerical and experimental closure stress intensity factors are normalized with the maximum stress intensity factor. Crack closure simulations are currently used in the aircraft industry. They are now being incorporated in same automotive and other ground vehicle fatigue analysis procedures.
7

Modèle numérique micro-mécanique d'agrégat polycristallin pour le comportement des combustibles oxydes

Pacull, Julien 04 February 2011 (has links)
Dans les réacteurs nucléaires à eau sous-pression, le combustible est constitué de pastilles d’oxyde d’uranium (UO2), dont le comportement ne peut être simulé qu'à travers une modélisation multi-échelles et multi-physiques, tenant compte à la fois de la thermo-mécanique et de la physico-chimie relative aux produits de fission. L’évolution récente des modèles et des moyens de calcul a permis de développer les simulations à l’échelle de la microstructure et d’accroitre les possibilités de couplage. Ce travail concerne le développement d'un modèle de comportement thermo-mécanique de l’UO2 à l’échelle du polycristal. Le comportement du VER est analysé en termes de réponse effective et de phénomènes de localisation. Nous nous intéressons notamment aux valeurs de pression hydrostatique, qui pilotent le transport des produits de fission. La robustesse des résultats obtenus en fonction du choix du maillage éléments finis est étudiée. Une série de calculs est présentée afin de trouver un compromis satisfaisant en termes de discrétisation pour une estimation correcte des contraintes locales. Une première étude propose de retrouver des mesures expérimentales de dé cohésion intergranulaire sur le combustible en introduisant des modèles de zones cohésives dans le VER. Afin d'analyser le comportement micromécanique de l’UO2 en irradiation, un chargement de type rampe de puissance est appliqué au polycristal. L’analyse des distributions locales de contraintes donne lieu à une discussion sur l’effet de l’incompatibilité intergranulaire sur le transport des produits de fission. / In Pressurized Water Reactors (PWR), fuel is generally composed of uranium dioxide pellets piled up within a zirconium tubular cladding. Modeling of the fuel behavior in nominal and accidental conditions requires multi-scale models in order to take into account both the thermo-mechanical behavior of the pellets and the effects of fission gases. Recent development of micromecanical tools of simulation has improved coupling possibilities. Our study proposes to set a full micromechanical model for uranium dioxide dealing with both mechanics and fission products transport at the scale of a polycristalline aggregate. Both the effective behavior of the RVE and stress localization effects are studied. Hydrostatic pressure, which directly controls the diffusion of fission gases, is given a particular focus. The numerical robustness of results is also debated in terms of mesh refinement. A series of simulations leads to a satisfying compromise between accuracy and calculation time. A study compares experimental measurement of intergranular crack opening and simulation results obtained using cohesive models. The micromecanical behavior of uranium dioxide during irradiation is analysed by submitting the polycristalline RVE to transient irradiation. The local stress distribution leads to a debate on the consequences of intergranular strain incompatibility on fission gases diffusion.
8

Modélisation par cinématique enrichie de la fissuration anisotrope des structures en béton armé : Application aux éléments bidimensionnels sous chargement cyclique / Anisotropic crack modelling of reinforced concrete structures with an enhanced kinematics : Application to bidimensional elements under cyclic loading

Kishta, Ejona 01 December 2016 (has links)
Les ouvrages de génie civil, imposants et uniques, sont majoritairement construits en béton armé ou précontraint. La durabilité, l'étanchéité et la sûreté sont primordiales lorsqu'il s'agit d'évaluer la performance d'un ouvrage. La fissuration est un phénomène majeur qui influence le comportement des ouvrages sous diverses sollicitations en terme de durabilité et de tenue structurale. Le développement de lois de comportement capables de décrire de manière robuste et efficace la réponse des matériaux quasi-fragiles sous sollicitations complexes représente encore aujourd'hui un paradigme qui suscite de nombreux travaux au sein de la communauté scientifique. L'objectif principal de ces travaux est le développement d'un modèle numérique capable de représenter explicitement la fissuration des éléments de structure en béton armé. La dégradation des structures en béton armé, caractérisée par un réseau de fissures anisotrope, est décrite par un modèle d'endommagement anisotrope fondé sur des fissures orientées. La cinématique du modèle est enrichie par un saut de déplacement de manière à représenter explicitement le développement de fissures dans le matériau. Ce saut de déplacement est identifié comme l'ouverture de fissure. Le modèle développé est validé sur des structures en béton présentant des mécanismes de ruine en mode I et mode mixte. Les performances du modèle sont illustrées via la simulation de structures en béton armé comme un voile en cisaillement soumis a un chargement cyclique. / Civil engineering buildings, massive and unique, are mostly made of reinforced or prestressed concrete. Sustainability, tightness and safety are the major pillars of a building's performance. Cracking is a major phenomenon which impacts the buildings' behaviour under different loadings in terms of sustainability and structural capacity. Development of numerical models which describe accurately the response of quasi-brittle materials under complex loading remains an important research topic for the scientific community. The objective of this work is the development of a numerical model which represents explicitly cracking of reinforced concrete structures. Concrete and reinforced concrete degradation process, characterised by the appearance of several anisotropic crack families, is described by means of an anisotropic damage model accounting for oriented crack families. The kinematics of this model is enriched with a displacement jump in order to reproduce the development of cracks in the material during loading. This displacement jump is identified as the crack opening. The developed model is validated on simulations of plain concrete structures exhibiting mode I as well as mixed-mode failure. The performances of the enriched model are shown by the simulation of reinforced concrete structures such as a shear wall submitted to cyclic loading.
9

Développement d'un outil numérique pour la prévision de la fissuration d’une structure en béton de fibres sous impact. / Development of a numerical tool for predicting the cracking of a fibre reinforced concrete structure under impact.

Akiki, Rana 06 December 2017 (has links)
Ce travail de recherche s'inscrit dans le cadre de la sécurité du transport et de manutention des colis de confinement de déchets nucléaires. Le but est de développer un outil numérique capable de simuler le comportement global d'une structure en béton de fibres soumise à des sollicitations dynamiques. Il permet également d'accéder à des informations plus locales telle que la fissuration, tant en terme de trajet que d'ouverture de fissures. Pour ce faire, un ensemble d'essais mécaniques est réalisé afin de mieux comprendre les mécanismes d'endommagement et de fissuration du matériau sous sollicitations quasi-statique et dynamique. Le modèle capable de capturer à l'échelle globale les non-linéarités liées à la fissuration de la structure dans un cadre continu est détaillé. Les paramètres associés à la loi de comportement sont identifiés via une procédure d'identification basée sur les données expérimentales des essais conduits. La détermination de l'énergie de fissuration en dynamique est investiguée et la part inertielle structurelle de celle-ci est soulignée. Deux méthodes de post-traitement numérique des résultats des simulations numériques globales permettant d'accéder à des informations plus fines à l'échelle locale, en termes de trajet et d'ouverture de fissure, sont détaillées. Une étude d'une poutre en béton fibré soumis à un chargement de flexion 1-point dynamique post-traitée avec les deux approches est présentée. Les résultats du post-traitement numérique sont comparés à ceux obtenus expérimentalement par corrélation d'images numériques. / The research work falls within the framework of the transportation and handling safety of radioactive waste containment packages. The goal is to develop a numerical tool capable of simulating the overall behaviour of a fiber concrete structure subject to a dynamic loading. It also gives access to more local information such as cracking, both in terms of path and opening. To do this, a set of mechanical tests is carried out in order to better understand the mechanisms of damage and cracking of the material under quasi-static and dynamic loading. The model capable of capturing on a global scale the non-linearities related to the cracking of the structure in a continuous framework is detailed. The parameters associated with the material constitutive law are identified via an identification procedure based on the experimental data of the conducted tests. The determination of dynamic cracking energy is investigated and the structural inertial part of this is underlined. Two numerical methods used to post-process the results of the global numerical simulations, giving access to finer information at the local scale, in terms of path and crack opening, are detailed. The study of a fiber-reinforced concrete beam subjected to a dynamic 1-point bending loading, post-processed with the two approaches, is presented. The results of the numerical post-processing are compared with those obtained experimentally by correlation of digital images.
10

[en] VERIFICATION OF THE (DELTA)KEFF HYPOTHESIS AS THE DRIVING FORCE FOR FATIGUE CRACK GROWTH / [pt] VERIFICAÇÃO DA HIPÓTESE DO (DELTA)KEF COMO A FORÇA MOTRIZ DA PROPAGAÇÃO DE TRINCAS POR FADIGA

JULIAN ANDRES ORTIZ GONZALEZ 09 December 2021 (has links)
[pt] Medindo a rigidez de corpos de prova em testes de propagação de trinca por fadiga, Elber identificou que a ponta da trinca só está totalmente aberta durante uma parte do ciclo de carregamento, e nomeou o carregamento onde a trinca abre totalmente de carga de abertura Pab. Baseado nisso, Elber assumiu que o dano à frente da trinca era induzido apenas pela fração do carregamento acima da Pab, propondo que a força motriz na propagação de trincas por fadiga é a gama do fator de intensidade de tensões efetivo (delta)Kef. Para verificar esta hipótese, neste trabalho foram examinados diferentes cenários em testes de propagação de trinca por fadiga. Primeiramente, em corpos DC(T) de aço AISI 1020 e em corpos DC(T) e C(T) de alumínio 6351-T6 foi propagada uma trinca com (delta)K e Kmax quase constantes, medindo Pab em campo próximo e em campo distante, com extensômetros e com um sistema 3D de correlação digital de imagens (DIC). Depois, usando novos corpos DC(T) de aço e de alumínio, foi propagada uma trinca com (delta)K e Kmax quase constantes, antes e depois de um evento de sobrecarga, medindo a Pab ao longo do teste, em campo próximo e campo distante. Cabe salientar que nesses testes as espessuras dos corpos de prova foram projetadas para que a trinca propagasse em tensão plana e em deformação plana. Finalmente, em testes de propagação de trinca com (delta)K e Kmax quase constantes, em corpos DC(T) de aço e de alumínio foi medido o campo de deformação à frente da ponta da trinca com um sistema de microscópio estéreo DIC, para analisar o comportamento dentro da zona plástica, medindo também a Pab com os métodos mencionados anteriormente. Dos resultados dos testes três comportamentos foram particularmente relevantes. Nos primeiros testes de propagação com deltaK e Kmax quase constantes, a razão Kab/Kmax diminuía enquanto a trinca propagava com uma taxa constante. Nos testes de sobrecarga o valor mínimo de (delta)Kef estava defasado em relação ao valor mínimo de taxa de propagação (da/dN). Já nos testes onde foi medido o campo deformação com o sistema de microscópio estéreo DIC, a deformação 0.1mm à frente da ponta da trinca mostrou que existia dano para cargas abaixo da Pab. Portanto, estes resultados não podem ser explicados pela hipótese de Elber, e contestam o (delta)Kef como a força motriz na propagação de trincas por fadiga. / [en] Measuring the stiffness of a fatigue-cracked plate during its loading cycle, Elber discovered that this crack only completely opened after reaching the crack opening load Pop. Based on this, Elber assumed that the damage ahead of the crack is induced by the loading part above the Pop. In this way, he proposed that the range of the effective stress intensity factor (delta)Keff is the driving force in fatigue crack growth. In order to verify this hypothesis, this study investigated different scenarios in fatigue crack growth tests. For this, DC(T) specimens of AISI 1020 steel, and DC(T) and C(T) specimens of 6351-T6 aluminum were tested. The fatigue crack growth tests were performed under quasi-constant K and Kmax conditions. The Pop measurements in the near and far field were obtained from strain gage readings and 3D Digital Image Correlation (DIC) analysis. In addition, simple variable amplitude tests were performed in steel and aluminum DC(T) specimens. A single tensile overload was introduced in the fatigue crack growth experiments under quasi-constant (delta)K and Kmax conditions, also measuring the Pop throughout the test in the near and the far field. It is important to note that the thickness of the specimens was designed to perform a crack propagation in plane stress and plane strain conditions. Moreover, near tip strain measurements in steel and aluminum DC(T) specimens were obtained with a stereo microscope DIC system, to analyze the behavior within the plastic zone, also measuring the Pop with the methods previously mentioned. From the experimental results, three behaviors were particularly relevant. In the first fatigue crack growth tests with quasi-constant {(delta)K, Kmax} conditions, the ratio Kop/Kmax decreased as the crack propagates under a constant rate. In the fatigue crack growth tests with overload application, the minimum value of (delta)Keff was lagged in relation to the minimum value of the propagation rate (da/dN). Finally, in the strain measurements performed with the stereo microscope DIC system, the de-formation at 0.1mm ahead of the crack tip showed the existence of damage in load values below Pop. Therefore, these results cannot be explained by Elber s hypothesis, and question the (delta)Keff as the driving force in fatigue crack growth.

Page generated in 0.0712 seconds