Spelling suggestions: "subject:"superabsorbent copolymer"" "subject:"superabsorbent bipolymer""
1 |
Diffusive processes in polyacrylic acid hydrogelsDewhurst, Peter F. January 1998 (has links)
The aim of this work was to characterise the diffusive properties of superabsorbent polymer systems prepared by free radical crosslinking polymerisation of acrylic acid. The polyelectrolyte nature of these hydrogels gives rise to high swelling capacities, and their ability to absorb and retain water is highly dependent on the precise network structure. Modifying the synthesis formulation results in considerable changes to the dynamic and structural properties of these gels, providing the motive for the work presented here. The influence of two factors, namely the extent of monomer neutralisation and the level of crosslinker in the pre-gel solution, were investigated. The dynamic properties of gels were examined using Quasi-Elastic Light Scattering (QELS), from which the cooperative diffusion coefficient and degree of heterogeneity could be determined. The former was found to increase linearly with neutralisation, due to the introduction of electrostatic interactions. The diffusion coefficient initially remained constant with the addition of crosslinker, due to the dominating influence of physical entanglements, but increased above a threshold crosslinking degree, corresponding to a reduction of the network mesh size. The extent of large-scale inhomogeneity increased for higher ionisations, as both the crosslinker solubility and the efficiency of monomer-crosslinker reaction decreased. However, there was a tendency for concentration fluctuations to be minimised for higher neutralisations, making the gel more microscopically homogeneous. Kinetics of swelling experiments were used to investigate gels of varying composition. The macroscopic diffusion coefficient was found to increase rapidly with increasing neutralisation until the monomer was approximately 35% neutralised, beyond which point counterion condensation caused insignificant variation. This trend was also reflected in the equilibrium swelling ratios, and mode of diffusion. For the majority of gels, the diffusion process was characterised as case II transport. Variation of crosslinking degree caused an overall increase in the diffusion coefficient, reflecting the trend observed in the QELS studies. Nuclear Reaction Analysis (NRA) was used to probe the penetration of heavy water into dry network slabs. The concentration-depth profiles revealed a discontinuity in the diffusion coefficient, corresponding to the transition between glassy and rubbery states, for which the diffusivities differed by several orders of magnitude. The kinetics of plasticisation was assumed to be the rate determining factor in the swelling process, on the timescale of the NRA experiments. The diffusion coefficient for the swollen rubbery region, representative of the macroscopic diffusion process, was found to increase linearly with neutralisation, and decrease with crosslinking degree. The latter observation was explained as due to a reduction in the free volume available for solvent diffusion with higher levels of crosslinker.
|
2 |
Drying Behavior of Oil Sand Mature Fine Tailings Pre-dewatered with Superabsorbent PolymerRoshani, Anis January 2017 (has links)
Oil sand processing to extract bitumen generates large volumes of slurry comprising water, silt, sand, clay, unrecovered bitumen, and residual chemical aides and solvents added during the extraction process. The by-product stream of the bitumen extraction is pumped into constructed tailings ponds. Managing these tailings is one of the most difficult environmental challenges for the oil sand industry. This study aims to develop a novel technique to assist in the assessment of the technologies for managing mature fine tailings (MFT) in oil sands. Innovative application of a superabsorbent polymer in the oil sands industry may provide a new method for tailings management. However, thus far, no study has addressed this research gap. In fact, fundamental knowledge of the behavior of MFTs pre-dewatered with the superabsorbent polymer could provide an important way to positively affect the speed of reclamation. To this end, comprehensive instrumentation, geo-environmental, and geotechnical analyses are carried out to obtain essential knowledge on the behavior of MFTs pre-dewatered with the polymer. The results of this study reveal that the mechanical, hydraulic, and thermal properties of the MFTs are related. Evaporation and drying shrinkage can affect the hydro-mechanical properties of the tailings and have a significant influence on the developed shear strength of the MFTs. In addition, the process-affected water includes a high concentration of the dissolved ions and organic chemicals that stem from ore extraction chemicals and tailings treatments, or that may be released from oil sands ores. Through the application of a superabsorbent polymer in the dewatering of oil sand MFTs, the chemical components are entrapped in the polymer chains, thus limiting the mobility of the major ions and trace metals in water bodies beneath the oil sand tailings pond. Results show that the application of the superabsorbent polymer considerably reduces the rate of drainage from the oil sand MFTs into water bodies, which can help mitigate the risk of seepage.
The author believes that the superabsorbent polymer dewatering technique can be considered as an environmentally friendly promising approach for management of oil sands MFTs. This new technique can accelerate the pace of reclamation and thus minimize the footprint of the oil industry in Canada.
|
3 |
Feasibility of lignocellulose as feedstock for biological production of super absorbent polymersNystrand, Christoffer January 2010 (has links)
Super absorbent polymers (SAP) can absorb liquid many times its own weight and is used in diapers and incontinence pads. The most common type of SAP is cross-linked polyacrylic acid. The production of acrylic acid uses crude oil as starting material. This means that the final price of acrylic acid is affected by the price of crude oil which is expected to rise. This has led to an increasing interest in developing a sustainable bioproduction process that uses renewable lignocellulosic raw material for the making of acrylic acid. Lignocellulose is the material that plants and trees consist of and it contains big amounts of sugar. Sugar molecules in lignocellulose can serve as substrate for microorganisms that can transform them into 3-hydroxipropionic acid, which in turn can be converted to acrylic acid. In order to use the sugar molecules from lignocellulose, some type of pretreatment is required. However, the pretreatments that are available today are not efficient enough to be applied on a large scale and some also cause the formation of microbial inhibitors. The microbial conversion of sugar to 3-hydroxipropionic acid do not show sufficient efficacy so far, but the process is under development and improvements are regularly made. Furthermore would it be advantageous if polymerization of acrylic acid could be made directly in the fermentation broth without any energy consuming separation stepsAttempts to polymerize acrylic acid in fermentations broths from yeast have been performed. The SAP properties; absorption capacity, absorption capacity under pressure and gel strength were evaluated by methods commonly used in the hygiene industry. These characteristics are important if the SAP is to be used in diapers and incontinence pads. To examine what compounds in the fermentations broth that affected the polymerization process and SAP properties, an experimental design was made. With help of the design quantitative and statistical methods were used to determine which compound had an impact. Four groups of compounds were selected for examination; sugars, alcohols, acids and aromatic compounds. The results of the experiments conducted showed that it is possible to polymerize SAP in fermentation broth from yeast using acid pretreated spruce as sugar source. The characterization showed that the absorption capacity was unchanged while the gel strength deteriorated significantly. It was also noted that SAP polymerized in fermentations broths had strong colors in contrast to conventional SAP, which is white. Qualitative and statistical analysis showed that the aromatic compounds affected the polymerization and SAP properties negative.
|
4 |
Superabsorbent Polymer Use in Rangeland RestorationNelson, Shannon V. 26 April 2023 (has links) (PDF)
Soil moisture deficits often hinder rangeland revegetation efforts. Due to sheer numbers and germination timing, invasive annual species can easily outcompete those of desired seeded species for resources, including water. One way to increase seedling establishment may be to increase the amount of water available to seeded species. Superabsorbent polymers (SAPs) can absorb and release hundreds of times their weight in water and slowly release it. Concentrated SAP bands at or near seedling rooting depth may act as a soil water reservoir for germinating seedlings and increase rangeland seedling establishment. The objective of these studies was to evaluate the effect of banded SAP on soil moisture and seedling establishment through a series of eight glasshouse and field trials with different combinations of: species, SAP band rate, SAP band placement depth, seeding rate, fertilizer application, and seedling distance from the SAP band. Two grasses, bottlebrush squirreltail (Elymus elymoides) or Siberian wheatgrass (Agropyron fragile) were used as test species in all studies but one. In that study six species commonly used in rangeland restoration [bottlebrush squirreltail, crested wheatgrass (Agropyron cristatum (L.)), Lewis flax (Linum lewisii Pursh), yellow sweet clover (Melilotus officinalis), Wyoming big sagebrush (Artemisia tridentata Nuttall ssp. wyomingensis Beetle Young), and forage kochia (Kochia prostrata (L.) Schrad.)] were used. Concentrated band of SAP at rates up to 6000 kg ha-1 were placed below the seeds at depths ranging from the soil surface to 15 cm deep or mixed into the top 8 or 15 cm of soil. Measurements varied with trial. Soil moisture measurements included gravimetric water content, volumetric water content, and/or soil matric potential. Seedling growth parameters included seedling time to emerge, number emerged, longevity, percent of seedlings alive, shoot length, blade count, root length, root biomass, shoot biomass, and/or root:shoot ratio. Banded SAP at high rates increased usable soil moisture up to 49 days in the glasshouse and in spring of the first year after installation in the field. Rates ? 1500 kg ha-1 increased seedling longevity up to 12 days in the glasshouse but resulted in raised and cracked soil. This negatively impacted seedling survival in the field but not the glasshouse and may also reduce the amount of available soil moisture over time. Banded SAP at rates < 1500 kg ha-1, intended to reduce soil cracking, had no impact on soil moisture or live seedlings in the field. Further work is needed to investigate alternative application methods, such as blending the SAP into the soil.
|
5 |
Síntese de superabsorventes poliméricos biodegradáveis por meio da extrusão reativa do Poli (álcool vinílico) e amido, em presença de aldeído e ácido glioxílico, para uso agrícola / Superabsorbent synthesis of polymeric biodegradable through reactive extrusion of Poly (vinyl alcohol) and starch, in the presence of aldehyde and glyoxilic acid, for agricultural useNascimento, Carlos Eduardo 26 August 2016 (has links)
Com a alta taxa de desertificação dos solos e a necessidade de irrigação constante dos plantios, existe a necessidade da criação de um polímero superabsorvente (SAP) com a característica de ser biodegradável. Observando o estágio tecnológico relacionado às atividades de pesquisa e desenvolvimento de SAPs no Brasil, foi utilizado o poli (álcool vinílico)/PVA e o amido de mandioca para a formação de hidrogéis a partir de blendas poliméricas. Assim, soluções aquosas desses polímeros foram reticuladas quimicamente, usando o glutaraldeído como agente reticulante e comparadas com amostras reticuladas por radiação gama, irradiadas a uma dose de 25 kgy. Os hidrogéis resultantes foram caracterizados por diversas técnicas analíticas como a fração gel, o intumescimento em água destilada, a espectroscopia de infravermelho com refletância total atenuada ATR (FT-IR), a termogravimetria (TG/DTG), a calorimetria exploratória diferencial (DSC) e a microscopia eletrônica de varredura (MEV). Observou-se uma maior reticulação nos hidrogéis reticulados com o glutaraldeído e em consequência um menor grau de intumescimento quando comparadas com as amostras que foram irradiadas. Com vias a produzir hidrogéis em uma escala industrial, misturas de PVA e amido foram processadas por extrusão reativa, mudando assim o processo de preparação de solução aquosa para misturas secas. Foram extrudadas amostras de PVA com diferentes pesos moleculares tais como o PVA 26-88, o PVA 40-88, o PVA 110-99 e o poli (ácido glioxílico vinílico)/PVGA, este último sintetizado a partir da modificação do PVA 110-99. Foi adicionado na mistura o ácido glioxílico no desenvolvimento do SAP por reticulação química nas amostras do PVA, por ter grupos carboxílicos que podem aumentar o intumescimento e também servir como agente reticulante. Também foram feitas formulações de extrusão sem o ácido glioxílico para serem usados como brancos. Adicionou-se nas misturas diversos agentes plastificantes como a glicerina e o polietilenoglicol (PEG 400) e as propriedades mecânicas foram estudadas. Foram desenvolvidas duas análises fatoriais de 23 para analisar as mudanças na reticulação das formulações. Os pellets foram caracterizados com as mesmas técnicas analíticas que os hidrogéis feitos em solução, adicionando-se análises de intumescimento e reversibilidade de intumescimento em diversos solventes como a água pura, a água da chuva, as soluções tampão de pH 3, pH 7 e pH 10, além de soro fisiológico, visando a aplicação em diferentes solos com diferentes pH e salinidades. Os testes de intumescimento em diferentes sais demonstraram a ter menor retenção de água quando comparada com água pura. Os testes de reversibilidade de intumescimento dos pellets mostraram que a maioria das formulações perde a sua capacidade de intumescimento máximo aos seis primeiros ciclos. Foi feita a compressão dos pellets para observar a flexibilidade dos mesmos, visando aplicações debaixo do solo. Realizou-se um estudo de biodegradação em terra ao longo de 120 dias, e estudou-se a relação direta com os valores da fração gel. Os resultados mostraram que os pellets menos reticulados intumesceram mais, enquanto as microscopias mostraram que essas amostras tinham uma morfologia mais porosa, o que contribuiu na melhora na retenção do líquido. Além disso, eram mais flexíveis e biodegradaram mais rápido, sendo extremamente viáveis para a aplicação na agricultura. Foi verificado que o PVA 40-88 apresentou os melhores valores de intumescimento em diferentes sais. Com o SAP obtido, foi constatado que a extrusão reativa é um método viável para a produção dos SAPs. / With high soil desertification rate and the need for constant irrigation of the plantations, there is the need to create a superabsorbent polymer (SAP) with the characteristic of being biodegradable. Noting the technological stage related to research and development activities of SAPs in Brazil, we used poly (vinyl alcohol)/PVA and cassava starch for the formation of hydrogels from polymer blends. Thus, aqueous solutions of these polymers were chemically crosslinked using glutaraldehyde as crosslinking agent and compared to samples cross-linked by gamma irradiation, irradiated the a dose of 25 kgy. The resulting hydrogels were characterized by various analytical techniques such as gel fraction, swelling in distilled water, infrared spectroscopy with attenuated total reflectance (ATR-FTIR), thermogravimetry (TG/DTG), the differential scanning calorimetry (DSC) and the scanning electron microscopy (SEM). There was a higher crosslink in the hydrogels crosslinked with glutaraldehyde and consequently a lower degree of swelling as compared to samples that were irradiated. With routes to produce hydrogels on an industrial scale, PVA and starch mixtures were processed by reactive extrusion, thus changing the aqueous solution preparation process to dry mix. PVA samples were extruded with different molecular weights such as PVA 26-88, PVA 40-88, PVA 110-99 and poly (vinyl glyoxylic acid)/PVGA, the latter synthesized from the modified PVA 110-99. It was added to the mixture glyoxylic acid in the SAP development by chemical crosslinking of the PVA sample for having carboxyl groups that may increase the swelling and also serve as crosslinker. Also extrusion formulations were made without the glyoxylic acid to be used as white. Was added to the mixture, various plasticizers such as glycerin and polyethylene glycol (PEG 400) and the mechanical properties were studied. two factor analyzes were developed from 23 to analyze the changes in crosslinking formulations. The pellets were characterized with the same analytical techniques that hydrogels made in solution by adding analyzes swelling and swelling of reversibility in various solvents such as pure water, rain water, pH buffer solutions 3, pH 7 and pH 10, in addition to saline solution, aimed at application in different soils with different salinities and pH. swelling tests at different salts shown to have lower water retention when compared to pure water. The pellets reversibility of the swelling tests showed that most formulations loses its swelling capacity up to the first six cycles. The compression of the pellets was taken to observe their flexibility, targeting applications underground. We conducted a study of biodegradation on land over 120 days, and studied the direct relationship with the gel fraction values. The results showed that the pellets swelled more crosslinked least while microscopy showed that these samples had a more porous morphology, which contributed to the improvement in fluid retention. Moreover, they are more flexible and biodegrade more rapidly and are extremely viable for use in agriculture. It has been found that PVA 40-88 showed better swelling values at different salts. With SAP obtained, it was found that the reactive extrusion is a viable method for the production of SAPs.
|
6 |
Síntese de superabsorventes poliméricos biodegradáveis por meio da extrusão reativa do Poli (álcool vinílico) e amido, em presença de aldeído e ácido glioxílico, para uso agrícola / Superabsorbent synthesis of polymeric biodegradable through reactive extrusion of Poly (vinyl alcohol) and starch, in the presence of aldehyde and glyoxilic acid, for agricultural useCarlos Eduardo Nascimento 26 August 2016 (has links)
Com a alta taxa de desertificação dos solos e a necessidade de irrigação constante dos plantios, existe a necessidade da criação de um polímero superabsorvente (SAP) com a característica de ser biodegradável. Observando o estágio tecnológico relacionado às atividades de pesquisa e desenvolvimento de SAPs no Brasil, foi utilizado o poli (álcool vinílico)/PVA e o amido de mandioca para a formação de hidrogéis a partir de blendas poliméricas. Assim, soluções aquosas desses polímeros foram reticuladas quimicamente, usando o glutaraldeído como agente reticulante e comparadas com amostras reticuladas por radiação gama, irradiadas a uma dose de 25 kgy. Os hidrogéis resultantes foram caracterizados por diversas técnicas analíticas como a fração gel, o intumescimento em água destilada, a espectroscopia de infravermelho com refletância total atenuada ATR (FT-IR), a termogravimetria (TG/DTG), a calorimetria exploratória diferencial (DSC) e a microscopia eletrônica de varredura (MEV). Observou-se uma maior reticulação nos hidrogéis reticulados com o glutaraldeído e em consequência um menor grau de intumescimento quando comparadas com as amostras que foram irradiadas. Com vias a produzir hidrogéis em uma escala industrial, misturas de PVA e amido foram processadas por extrusão reativa, mudando assim o processo de preparação de solução aquosa para misturas secas. Foram extrudadas amostras de PVA com diferentes pesos moleculares tais como o PVA 26-88, o PVA 40-88, o PVA 110-99 e o poli (ácido glioxílico vinílico)/PVGA, este último sintetizado a partir da modificação do PVA 110-99. Foi adicionado na mistura o ácido glioxílico no desenvolvimento do SAP por reticulação química nas amostras do PVA, por ter grupos carboxílicos que podem aumentar o intumescimento e também servir como agente reticulante. Também foram feitas formulações de extrusão sem o ácido glioxílico para serem usados como brancos. Adicionou-se nas misturas diversos agentes plastificantes como a glicerina e o polietilenoglicol (PEG 400) e as propriedades mecânicas foram estudadas. Foram desenvolvidas duas análises fatoriais de 23 para analisar as mudanças na reticulação das formulações. Os pellets foram caracterizados com as mesmas técnicas analíticas que os hidrogéis feitos em solução, adicionando-se análises de intumescimento e reversibilidade de intumescimento em diversos solventes como a água pura, a água da chuva, as soluções tampão de pH 3, pH 7 e pH 10, além de soro fisiológico, visando a aplicação em diferentes solos com diferentes pH e salinidades. Os testes de intumescimento em diferentes sais demonstraram a ter menor retenção de água quando comparada com água pura. Os testes de reversibilidade de intumescimento dos pellets mostraram que a maioria das formulações perde a sua capacidade de intumescimento máximo aos seis primeiros ciclos. Foi feita a compressão dos pellets para observar a flexibilidade dos mesmos, visando aplicações debaixo do solo. Realizou-se um estudo de biodegradação em terra ao longo de 120 dias, e estudou-se a relação direta com os valores da fração gel. Os resultados mostraram que os pellets menos reticulados intumesceram mais, enquanto as microscopias mostraram que essas amostras tinham uma morfologia mais porosa, o que contribuiu na melhora na retenção do líquido. Além disso, eram mais flexíveis e biodegradaram mais rápido, sendo extremamente viáveis para a aplicação na agricultura. Foi verificado que o PVA 40-88 apresentou os melhores valores de intumescimento em diferentes sais. Com o SAP obtido, foi constatado que a extrusão reativa é um método viável para a produção dos SAPs. / With high soil desertification rate and the need for constant irrigation of the plantations, there is the need to create a superabsorbent polymer (SAP) with the characteristic of being biodegradable. Noting the technological stage related to research and development activities of SAPs in Brazil, we used poly (vinyl alcohol)/PVA and cassava starch for the formation of hydrogels from polymer blends. Thus, aqueous solutions of these polymers were chemically crosslinked using glutaraldehyde as crosslinking agent and compared to samples cross-linked by gamma irradiation, irradiated the a dose of 25 kgy. The resulting hydrogels were characterized by various analytical techniques such as gel fraction, swelling in distilled water, infrared spectroscopy with attenuated total reflectance (ATR-FTIR), thermogravimetry (TG/DTG), the differential scanning calorimetry (DSC) and the scanning electron microscopy (SEM). There was a higher crosslink in the hydrogels crosslinked with glutaraldehyde and consequently a lower degree of swelling as compared to samples that were irradiated. With routes to produce hydrogels on an industrial scale, PVA and starch mixtures were processed by reactive extrusion, thus changing the aqueous solution preparation process to dry mix. PVA samples were extruded with different molecular weights such as PVA 26-88, PVA 40-88, PVA 110-99 and poly (vinyl glyoxylic acid)/PVGA, the latter synthesized from the modified PVA 110-99. It was added to the mixture glyoxylic acid in the SAP development by chemical crosslinking of the PVA sample for having carboxyl groups that may increase the swelling and also serve as crosslinker. Also extrusion formulations were made without the glyoxylic acid to be used as white. Was added to the mixture, various plasticizers such as glycerin and polyethylene glycol (PEG 400) and the mechanical properties were studied. two factor analyzes were developed from 23 to analyze the changes in crosslinking formulations. The pellets were characterized with the same analytical techniques that hydrogels made in solution by adding analyzes swelling and swelling of reversibility in various solvents such as pure water, rain water, pH buffer solutions 3, pH 7 and pH 10, in addition to saline solution, aimed at application in different soils with different salinities and pH. swelling tests at different salts shown to have lower water retention when compared to pure water. The pellets reversibility of the swelling tests showed that most formulations loses its swelling capacity up to the first six cycles. The compression of the pellets was taken to observe their flexibility, targeting applications underground. We conducted a study of biodegradation on land over 120 days, and studied the direct relationship with the gel fraction values. The results showed that the pellets swelled more crosslinked least while microscopy showed that these samples had a more porous morphology, which contributed to the improvement in fluid retention. Moreover, they are more flexible and biodegrade more rapidly and are extremely viable for use in agriculture. It has been found that PVA 40-88 showed better swelling values at different salts. With SAP obtained, it was found that the reactive extrusion is a viable method for the production of SAPs.
|
7 |
EVALUATING THE SELF HEALING BEHAVIOR OF THE FIBER-REINFORCED CEMENTITIOUS COMPOSITE INCORPORATING THE INTERNAL CURING AGENTSCihang Huang (9179918) 30 July 2020 (has links)
<div>
<p>The formation of
the cracks in concrete materials can shorten the service life of the structure
by exposing the steel rebar to the aggressive substances from the external
environment. Self-healing concrete can eliminate the crack automatically, which
has the potential to replace manual rehabilitation and repairing work. This
thesis intends to develop a self-healing fiber-reinforced cementitious
composite by the use of internal curing agents, such as lightweight aggregate,
zeolite and superabsorbent polymer (SAP). This study has evaluated the crack
width control ability of three different types of fiber, polyvinyl alcohol
fiber (PVA), Masterfiber Mac Matrix and Strux 90/40 fiber. Mechanical
performance and flexural stress-strain behavior of the fiber-reinforced
cementitious composite were tested and compared. In order to investigate the
feasibility of using internal curing aggregate to enhance autogenous healing
performance, two types of porous aggregates, zeolite and lightweight aggregate
(LWA), were used as internal curing agents to provide water for the autogenous
healing. The pore structure of the zeolite and lightweight aggregate was examined
by the scanning electron microscopy (SEM). Two replacement ratios of sand with
internal curing aggregates were designed and the healing efficiency was
evaluated by the resonant frequency measurement and the optical microscopic
observation. To further understand the influence of the internal curing on the
designed material, water retention behavior of the bulk sample and the internal
curing aggregates was evaluated. Moreover,
to study the self-sealing effect of the superabsorbent polymer (SAP), the
robustness of the SAP under various environmental conditions was first evaluated.
The influence of the superplasticizer, hydration accelerator and fly ash on the
absorption behavior of the SAP was investigated by the filtration test and void
size analysis. Afterward, the self-sealing performance of the SAP in cement
paste was evaluated by a water flow test.</p>
<p>The evaluation
of three types of fiber indicated that the use of PVA fiber could produce a
cementitious composite with stronger mechanical strength and crack width
control ability. The result of the autogenous healing evaluation showed that
the incorporation of the internal curing aggregates increased the self-healing
recovery ratio from 12.6% to over 18%. The internal curing aggregate could
absorb and store water during the wet curing and release it when the external
water supply is unavailable. The comparison between the two types of internal
curing aggregates indicated that finer pores in the internal curing aggregate
can lead to a slower water release rate that is capable of continuously supplying
water for the autogenous healing. In addition, the SAP was proved to be robust
when various content of the additives and fly ash were used. And the
self-sealing effect of the SAP is found to be effective in regaining the water
tightness of cement paste. The result of this thesis can assist in the design
of the fiber-reinforced cementitious composite with self-healing performance in
civil engineering.</p>
</div>
<br>
|
8 |
Method development for producing napkins and femcare absorbent cores by using an airlaid former / Metodutveckling för att tillverka servetter och absorptionskärnor inom damhygien genom att använda en airlaid maskinKilegran, Linnea January 2020 (has links)
Fluffmassa är ett förnybart material bestående av cellulosafiber som utvinns under massakokning. Dessa fiber används för att tillverka olika absorberande produkter som till exempel servetter. Fluffmassa används även för att tillverka absorptionskärnor i damhygienprodukter, inkontinensprodukter och blöjor. Vissa av dessa absorptionskärnor (speciellt i ultratunna bindor) tillverkas med airlaid. Airlaid är en tillverkingsteknik som ger fiberstrukturer med slumpmässig orientering genom att applicera ett undertryck. Syftet med detta examensarbete var att utveckla metoder för att tillverka servetter och absorptionskärnor till damhygienprodukter i laboratoriemiljö genom att använda en airlaid maskin i laboratorieskala. Detta utfördes genom att analysera viktiga egenskaper som exempelvis ytvikt, tjocklek, densitet, böjlängd och förmågan att absorbera vätska i kommersiella servetter och absorptionskärnor inom damhygien. Även dragprov och SEM-analys utfördes. Resultatet från dessa analyser användes som ett riktvärde under metodutvecklingen. Två metoder utvecklades - en för att tillverka en servettstruktur och en för att tillverka en absorptionskärna för damhygien. De olika tillverkningsstegen inkluderar defibrering, formering, pressning, prägling, latexsprayning samt härdning. Båda strukturerna tillverkades, och dess egenskaper analyserades och jämfördes med de kommersiella produkterna. Analyserna visade att de utvecklade metoderna genererade struktuer vars ytvikt stämde väl överrens med de kommersialla produkterna. Strukturerna var dock tjockare och hade en lägre densitet än de kommmersiella produkterna. Den minskade densiteten påverkade förmodligen resultatet från de andra analyserna som utfördes i detta projekt. Servettstrukturen hade en lägre böjlängd än de kommersiella servetterna och damhygienstrukturen hade bättre absorption än de kommersiella produkterna. Båda strukturerna hade en ytfinish som överensstämmde väl med de kommersiella produkterna. Dock visade SEM-analysen att latex saknades i mitten av de båda tillverkade strukturerna. / Fluff pulp is a renewable material consisting of pure cellulose fibers which are obtained during pulping. These fibers are commonly used to form Airlaid-nonwoven products such as napkins and wipes. Fluff pulp is also used in absorbent cores in femcare products, incontinence products and diapers. Some of these absorbent core structures (especially in ultrathin pads) are produced through airlaid. Airlaid is a manufacturing technique which forms a randomly oriented fiber structure by using an applied suction. This degree project aimed at developing methods for producing napkins and femcare absorbent cores on a laboratory scale by using an airlaid former. Important properties such as grammage, thickness, density, bending length and absorption capacity were therefore measured on commercial napkins and femcare absorbent cores. Other analyses which were performed include tensile testing and SEM. Findings from these analyses were then used as a target reference during the method development. Two methods were developed; one for producing a napkin structure and one for producing a femcare absorbent core structure. The different manufacturing steps included fiber defiberization, sample formation, pressing, embossing, latex spraying and curing. Napkin structures and femcare absorbent core structures were produced by using the developed methods, and their properties were analyzed and compared with the commercial products. Analysis showed that the developed methods generated structures with grammages that corresponded well with the grammages in the commercial products. However, both developed structures were thicker and had lower density than the commercial products. This decreased density probably influenced the results in other analyses performed in this project. The developed napkin structure had a shorter bending length compared to the commercial napkins and the developed femcare structure had a better absorption capacity compared to the commercial femcare absorbent cores. Both developed structures obtained nice surface finish which corresponded well with the surface finish in the commercial products. However, SEM analysis indicated that no latex managed to reach the center in the developed structures.
|
9 |
Highly structured polymer foams from liquid foam templates using millifluidic lab-on-a-chip techniquesTestouri, Aouatef 08 October 2012 (has links) (PDF)
Polymer foams belong to the solid foams family which are versatile materials, extensively used for a large number of applications such as automotive, packaging, sport products, thermal and acoustic insulators, tissue engineering or liquid absorbents. Composed of air bubbles entrapped in a continuous solid network, they combine the properties of the polymer with those of the foam to create an intriguing and complex material. Incorporating a foam into a polymer network not only allows one to use the wide range of interesting properties that the polymer offers, but also permits to profit from the advantageous properties of foam including lightness, low density, compressibility and high surface-to-volume ratio. Generally, the properties of polymer foams are strongly related to their density and their structure (bubble size and size distribution, bubble arrangement, open vs closed cells). Having a good control over foam properties is thus achieved by first controlling its density and structure.We developed a technique in which solid foams are generated essentially in a two-step process: a sufficiently stable liquid foam with well-controlled structural properties is generated in a first step, and then solidified in a second one. With such a two-step approach, the generation of solid foams can be divided into a number of well-separated sub-tasks which can be controlled and optimised separately. The transition from liquid to solid state is a sensitive issue of a great importance and therefore needs to be controlled with sufficient accuracy. It is essentially composed of three key steps: foam generation, mixing of reactants and foam solidification and requires the optimisation of foam stability in conjunction with an appropriate choice of both foaming time and solidification time. Furthermore, a good homogeneity of the polymer foam calls for a good mixing of the different reactants involved in the foaming and the polymerisation.A particularly powerful demonstration of the advantages of this approach is given by solidifying monodisperse liquid foams generated using millifluidic technique, in which all bubbles have the same size. In a liquid foam, equal-volume bubbles self-order into periodic, close-packed structures under gravity or confinement. As such, monodisperse foams provide simultaneous control over the size and the organisation of the pores in the final solid with an accuracy which is expected to give rise to a better understanding of the structure-property relationship of porous solids and to the development of new porous materials.We therefore aim to explore the new spectrum of properties, which polymer foams offer when we introduce an ordered structure into them since the most widely used polymer foams nowadays have disordered structures. The goal of our study is to demonstrate the feasibility of this two-step approach for different classes of polymers, including biomolecular hydrogel, superabsorbent polymer and polyurethane.For the generation of the structured polymer foams we use Lab-on-a-Chip technologies which allow the "shrinking" of large-scale set-ups to micro/millimetic scale. It permits also to perform "flow chemistry" in which the various liquid and gaseous ingredients of the foam are injected and mixed in a purpose-designed network of the micro- and millifluidic Lab-on-a-Chip. We adjust this approach according to the requirements of each polymer system, i.e. the foaming and the mixing techniques are chosen to fit the properties of each system, and can be exchanged to fit the properties of the studied systems.
|
10 |
Swelling and Dye Adsorption Characteristics of Superabsorbent PolymersSharma, Tarun January 2015 (has links) (PDF)
In the current study, SAPs of cationic monomer [2 - (Methacryloyloxy) ethyl] trimethylammonium chloride have been prepared by free radical solution polymerisation with different crosslinkers. They were subjected to repeated cycles of swelling and de-swelling in DI water and NaCl solution. The conductivity of the swelling medium was measured and related to the swelling/de-swelling characteristics of the SAPs. The swelling capacity was also determined in saline solution. The swelling and de-swelling processes were described by first-order kinetics. The SAPs exhibited varied swelling capacity for crosslinkers of the same functionality as well as different functionality. The SAPs were used to adsorb, the dye Orange G at different initial concentrations of the dye. The equilibrium adsorption data followed the Langmuir adsorption isotherms. The SAPs were also used to adsorb three other dyes, Congo red, Amido black and Alizarin cyanine green. They exhibited different adsorption capacity for different dyes. The adsorption phenomenon was found to follow first order kinetics. In the later part of the study, the co-monomers of [2 - (Methacryloyloxy) ethyl] trimethylammonium chloride with zwitter-ionic monomers [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide and [3-(Methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide inner salt were prepared in turns at two different concentrations. The effect of the addition of the zwitter-ionic monomers and their concentration of the swelling capacity and dye adsorption capacity was studied. There was no effect on the swelling capacity of the polymers due to either the species of the zwitter-ionic monomer or their concentration. However, there was a reduction in soluble content of the polymers. The dye adsorption capacity decreased at the higher concentration of the zwitter-ionic monomer.
|
Page generated in 0.0628 seconds