• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 15
  • 5
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 111
  • 41
  • 39
  • 36
  • 30
  • 26
  • 23
  • 22
  • 21
  • 19
  • 18
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Predicting Compression Failure of Fiber-reinforced Polymer Laminates during Fire

Summers, Patrick T. 23 May 2010 (has links)
A thermo-structural model was developed to predict the failure of compressively loaded fiber-reinforced polymer (FRP) laminates during fire. The thermal model was developed as a one-dimensional heat and mass transfer model to predict the thermal response of a decomposing material. The thermal properties were defined as functions of temperature and material decomposition state. The thermal response was used to calculate mechanical properties. The structural model was developed with thermally induced bending caused by one-sided heating. The structural model predicts out-of-plane deflections and compressive failure of laminates in fire conditions. Laminate failure was determined using a local failure criterion comparing the maximum combined compressive stress with the compressive strength. Intermediate-scale one-sided heating tests were performed on compressively loaded FRP laminates. The tests were designed to investigate the effect of varying the applied stress, applied heat, and laminate dimensions on the structural response. Three failure modes were observed in testing: kinking, localized kinking, and forced-response deflection, and were dependent on the applied stress level and independent of applied heating. The times-to-failure of the laminates followed an inverse relationship with the applied stress and heating levels. The test results were used to develop a relationship which relates a non-dimensionalized applied stress with a non-dimensionalized slenderness ratio. This relationship relates the applied stress, slenderness ratio, and temperature of the laminate at failure and can be used to determine failure in design of FRP laminate structures. The intermediate-scale tests were also used to validate the thermo-structural model with good agreement. / Master of Science
52

Implementation of Infrared Non-Destructive Evaluation in Fiber-Reinforced Polymer Bouble-Web I-Beams

Mehl, Nicholas 27 February 2006 (has links)
When taking steps away from tried and true designs, there is always a degree of uncertainty that arises. With the introduction of fiber-reinforced polymers (FRP) in double-web I-beams (DWIB) to replace steel beams in bridge applications, there are many benefits along with the disadvantages. A bridge has been built with this new type of beam after only short-term proof testing for validation. Nondestructive evaluation (NDE) is a way to implement health monitoring of the bridge beams and needs to be assessed. The principal underlying infrared thermal imaging (IR) nondestructive evaluation (NDE) is to induce a thermal gradient in the beam through heating and monitor how it changes. Delaminations determined by others to be the critical form of deterioration, would be expected to affect the heat conduction in these beams. This project used a halogen lamp to heat the surface of the beam followed by an observation with an IR camera. Calculations of an ANSYS finite element analysis (FEA) model were compared with a series of laboratory tests. The experimental results allowed for validation of the model and development of an IR inspection procedure. This work suggests that for high quality beams of the type considered that an IR procedure could be developed to detect delaminations as small as one inch in length; however, the size would be underestimated. / Master of Science
53

Long-term In-service Evaluation of Two Bridges Designed with Fiber-Reinforced Polymer Girders

Kassner, Bernard Leonard 23 September 2004 (has links)
A group of researchers, engineers, and government transportation officials have teamed up to design two bridges with simply-supported FRP composite structural beams. The Toms Creek Bridge, located in Blacksburg, Virginia, has been in service for six years. Meanwhile, the Route 601 Bridge, located in Sugar Grove, Virginia, has been in service for two years. Researchers have conducted load tests at both bridges to determine if their performance has changed during their respective service lives. The key design parameters under consideration are: deflection, wheel load distribution, and dynamic load allowance. The results from the latest tests in 2003 yield little, yet statistically significant, changes in these key factors for both bridges. Most differences appear to be largely temperature related, although the reason behind this effect is unclear. For the Toms Creek Bridge, the largest average values from the 2003 tests are 440 me for service strain, 0.43 in. (L/484) for service deflection, 0.08 (S/11.1) for wheel load distribution, and 0.64 for dynamic load allowance. The values for the Route 601 Bridge are 220 me, 0.38 in. (L/1230), 0.34 (S/10.2), and 0.14 for the same corresponding paramters. The recommended design values for the dynamic load allowance in both bridges have been revised upwards to 1.35 and 0.50 for the Toms Creek Bridge and Route 601 Bridge, respectively, to account for variability in the data. With these increased factors, the largest strain in the toms Creek Bridge and Route 601 Bridge would be less than 13% and 12%, respectively, of ultimate strain. Therefore, the two bridges continue to provide a large factor of safety against failure. / Master of Science
54

Testing and Analysis of a Fiber-Reinforced Polymer (FRP) Bridge Deck

Liu, Zihong 27 July 2007 (has links)
A fiber reinforced polymer (FRP) composite cellular deck system was used to rehabilitate a historical cast iron thru-truss structure (Hawthorne St. Bridge in Covington, Virginia). This research seeks to address following technical needs and questions to advance FRP deck application. The critical panel-to-panel connections were developed and evolved through a four-stage study and finally realized using full width, adhesively bonded tongue and groove splices with scarfed edges. Extensive experimental study under service, strength and fatigue loads in a full-scale two-bay mock-up test and a field test was performed. Test results showed that no crack initiated in the joints under service load and no significant change in stiffness or strength of the joint occurred after 3,000,000 cycles of fatigue loading. Various issues related to constructability of FRP deck systems were investigated and construction guidelines and installation procedures for the deck system were established. The structural performance of the FRP-on-steel-superstructure system was examined in the laboratory and field under service load. Tests results confirmed the following findings: (1) the clip-type of panel-to-stringer connection provides little composite action as expected, which fulfilled the design intention; (2) local effects play an important role in the performance of FRP deck; (3) the FRP deck design is stiffness driven rather than strength driven like traditional concrete deck. Finally, an FEM parametric study was conducted to examine two important design issues concerning the FRP decks, namely deck relative deflection and LDF of supporting steel girders. Results from both FEM and experiments show that the strip method specified in AASHTO LRFD specification (AASHTO 2004) as an approximate method of analysis can also be applied to unconventional FRP decks as a practical method. However, different strip width equations have to be determined by either FEM or experimental methods for different types of FRP decks. In this study, one such an equation has been derived for the Strongwell deck. In addition, the AASHTO LDF equations for glued laminated timber decks on steel stringers provide good estimations of LDFs for FRP-deck-on-steel-girder bridges. The lever rule can be used as an appropriately conservative design method to predict the LDFs of FRP-deck-on-steel-girder bridges. / Ph. D.
55

Shear Strength and Strength Degradation of Concrete Bridge Decks with GFRP Top Mat Reinforcement

Amico, Ross Dominick 05 August 2005 (has links)
The primary objective of this research was to investigate the shear strength of concrete bridge decks with GFRP top-mat reinforcement. Several models currently exist to predict the shear strength during the design process; however, previous research at Virginia Tech indicates that the existing equations are overly conservative. For this research, a series of concrete decks with varying lengths were tested in a laboratory environment in a two-span continuous configuration, during which data was collected on deflections, rebar strain, crack widths, and ultimate load. It was concluded that the existing equations, particularly the guidelines of ACI 440, are grossly over-conservative for GFRP-reinforced concrete bridge decks continuous over multiple supports. It was suggested that this is due to multiple factors, including additional support provided by the typically-neglected steel reinforcement in the bottom mat and a higher shear strength of the uncracked portion of concrete due to higher compressive stresses in the section as a result of the continuous deck configuration. The second objective of this research was to investigate the effects of environmental exposure on the composite deck and the individual GFRP rebar. Three deck specimens were subjected to differing environmental conditions, including one that was placed into service at an interstate weigh station. All three decks were tested in the same manner as those in the shear investigation. Additionally, live load tests were conducted on the weigh station deck during the time it was in place and tensile tests were conducted on rebar that were extracted from the concrete decks. In the live load testing, the GFRP strains increased by more than 200% over the period of service, which was likely due to a combination of a reduction in GFRP stiffness and a greater amount of cracking. During the laboratory tests on the decks, no clear correlation between conditioning and deflections or cracking was found. The ultimate strength actually increased with conditioning, with the weigh station specimen exhibiting the highest shear strength. Finally, the results of the rebar tensile tests suggested a decrease in both modulus of elasticity and ultimate tensile strength of the GFRP with environmental exposure when compared to unconditioned bars. / Master of Science
56

Performance of a Bridge Deck with Glass Fiber Reinforced Polymer (GFRP) Bars as the Top Mat of Reinforcement

Phillips, Kimberly Ann 21 December 2004 (has links)
The purpose of this research was to investigate the effectiveness and durability of GFRP bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advantages of GFRP such as its high tensile strength, light weight, and resistance to corrosion make it an attractive alternative to steel. The first objective of this research was to perform live load testing on a bridge deck reinforced with GFRP in one span and steel in the other. The results were compared to the findings from the initial testing performed one year earlier. The strains and deflections of the bridge deck were recorded and the two spans compared. Transverse stresses in the GFRP bars, girder distribution factors, and dynamic load allowances were calculated for both spans. From the live load tests, it was concluded that the GFRP-reinforced span results were within design parameters. The only concern was the increased impact factor values. The second objective was to perform live load tests on a slab reinforced with GFRP installed at a weigh station. Two live load tests were performed approximately five months apart. Peak strains in the GFRP and steel bars were recorded and compared. The peak stresses had increased over time but were within design allowable stress limits. The third objective of this research was to investigate the long term behavior and durability of the GFRP reinforcing bars cast in a concrete deck. The strain gauges, vibrating wire gauges, and thermocouples in the bridge deck were monitored for approximately one year using a permanent data acquisition system. Daily, monthly, and long term fluctuations in temperature and stresses were examined. It was concluded that the vibrating wire gauges were more reliable than the electrical resistance strain gauges. It was further observed that the main influence over strain changes was temperature fluctuations. / Master of Science
57

Fatigue Life of Hybrid FRP Composite Beams

Senne, Jolyn Louise 17 July 2000 (has links)
As fiber reinforced polymer (FRP) structures find application in highway bridge structures, methodologies for describing their long-term performance under service loading will be a necessity for designers. The designer of FRP bridge structures is faced with out-of-plane damage and delamination at ply interfaces. The damage most often occurs between hybrid plys and dominates the life time response of a thick section FRP structure. The focus of this work is on the performance of the 20.3 cm (8 in) pultruded, hybrid double web I-beam structural shape. Experimental four-point bend fatigue results indicate that overall stiffness reduction of the structure is controlled by the degradation of the tensile flange. The loss of stiffness in the tensile flange results in the redistribution of the stresses and strains, until the initiation of failure by delamination in the compression flange. These observations become the basis of the assumptions used to develop an analytical life prediction model. In the model, the tensile flange stiffness is reduced based on coupon test data, and is used to determine the overall strength reduction of the beam in accordance the residual strength life prediction methodology. Delamination initiation is based on the out-of-plane stress sz at the free edge. The stresses are calculated using two different approximations, the Primitive Delamination Model and the Minimization of Complementary Energy. The model successfully describes the onset of delamination prior to fiber failure and suggests that out-of-plane failure controls the life of the structure. / Master of Science
58

Assessment of Infrared Thermography for NDE of FRP Bridge Decks

Miceli, Marybeth 10 January 2001 (has links)
Statistics released in the fall 1989 showed that 238,357 (41%) of the nation's 577,710 bridges are either structurally deficient or functionally obsolete. New materials, such as fiber reinforced polymeric composites (FRP), are being suggested for use in bridge systems to solve some of the current problems. These materials are thought to be less affected by corrosive environmental conditions than conventional civil engineering materials. Therefore they may require less maintenance and provide longer life spans. More specifically, glass fiber reinforced vinyl ester matrix composites are considered possible replacements for deteriorating conventional bridge decks due to their durability, decreased weight, and relative affordability. In order to facilitate rapid acceptance of FRP structural components into the world of civil structural engineering, effective and efficient NDE techniques must be explored and documented in these situations. This thesis will discuss the use of Infrared Thermography (IRT) as a means of detecting debonds and voids caused by conditions encountered both in fabrication and in the field. As forced convective hot air is applied within the bridge deck, debonds between bridge deck components near the riding surface appear cold while imperfections near the bottom of the deck give rise to concentrations of heat. These variations in thermal propagation patterns are observed by the infrared camera and indicate possible structural deficiencies. Results of experimentation and thermal analyses from laboratory studies of a model bridge deck and some from in situ full-scale investigations are presented. / Master of Science
59

Glass Fiber Reinforced Polymer Bars as the Top Mat Reinforcement for Bridge Decks

DeFreese, James Michael 20 December 2001 (has links)
The primary objective of this research was to experimentally investigate material and bond properties of three different types of fiber reinforced polymer (FRP) bars, and determine their effect on the design of a bridge deck using FRP bars as the top mat of reinforcement. The properties evaluated include the tensile strength, modulus of elasticity, bond behavior, and maximum bond stress. The experimental program included 47 tensile tests and 42 beam end bond tests performed with FRP bars. Tensile strength of the bars from the tensile testing ranged from 529 MPa to 859 MPa. The average modulus, taken from all the testing, for each type of bar was found to range from 40 GPa to 43.7 GPa. The maximum bond stress from the beam end bond tests ranged from 9.17 MPa to 25 MPa. From the tests, design values were found in areas where the properties investigated were related. These design values include design tensile strength, design modulus of elasticity, bond coefficient for deflection calculations, bond coefficient for crack width calculations, and development length. The results and conclusions address design concerns of the different types of FRP bars as applied in the top mat of reinforcement of a bridge deck. A secondary objective was to evaluate the disparity in results between direct pullout tests, and beam end bond tests. Results from the experimentally performed beam end bond test were compared to previous literature involving the direct pullout tests. Results from the performed beam end bond tests were higher than all of the literature using direct pullout results. No recommendations were given on the disparity between the two test methods. / Master of Science
60

Řešení vybraných detailů betonových konstrukcí vyztužených kompozitní výztuží / Design of selected details of concrete structures reinforced with composite reinforcement

Vašátko, David January 2022 (has links)
The aim of this master thesis is to explore and describe behavior of slab in punching shear. In total four concrete slabs were experimentally tested; each being reinforced differently. Using real experiments, there was a possibility to observe different behavior of steel and FRP reinforcement, eventually even the effect of adding FRP stirrups on load-bearing capacity. For the purpose of experimental testing design, currently placed formulas used to determine punching shear capacity were adjusted for application on longitudinal and shear FRP reinforcement. Atena software was used to approximate behavior of specimens by performing a nonlinear analysis. After the results of loading tests were obtained, next step was the comparison of design approaches and comparison of behavior of nonlinear model to a real specimen. In practical part, design of locally supported slab with requirement of non-magnetic reinforcement took place.

Page generated in 0.0601 seconds