Spelling suggestions: "subject:"fiberreinforced composite"" "subject:"fibrereinforced composite""
11 |
Glass and Jute fibers modified with CNT-based functional coatings for high performance compositesTzounis, Lazaros 02 July 2014 (has links) (PDF)
Carbon nanotubes are known as one of the strongest materials in nature and since their discovery; they have triggered the scientific interest for fabricating multi-functional polymer composites. However, a well-known problem associated to the incorporation of nanoparticulate materials in polymer matrices is their tendency to agglomerate in order to reduce their surface energy, and the extreme increase of the polymer viscosities (i.e melts, solutions, etc), which makes it very difficult to process them. Polymers can be efficiently reinforced by fibers for applications where high strength and stiffness are required. Micro-scale short fiber reinforced polymer composites have been an alternative way to obtain fiber reinforced composites since the long fiber incorporation is a painful job and not always feasible and easy to produce composites in big scale.
Therefore, use of long glass fibers as the support for depositing CNTs as well as CNTs+other kind of nanoparticles was made, and the resulting interfaces were investigated in detail by single fiber model composites. This approach can bring the CNT functionality, fiber strength and toughness to the final composite, and simultaneously alleviate the manufacturing process from increase of the polymer high viscosities. Finally, very logically the question of whether to improve or destroy the interface integrity comes before implementing the hybrid hierarchical reinforcements in bigger scales, and an output out of this work will be given. Furthermore, several information and functionalities arising from the CNTs at the interphase region will be elucidated like cure monitoring of the epoxy resin matrix, UV-sensing ability, and thermoelectric energy harvesting, giving rise to multi-functional structural composites. CNT-modified natural fibers also have been utillised to fabricate short fiber reinforced composites, and have shown a promising reinforcement effect due to the CNT nanostructured interfaces.
The ‘interface’ in fiber reinforced polymer composites (FRPCs) is known as a very crucial parameter that has to be considered in the design of a composite with desired properties. Interfaces are often considered as surfaces however, they are in fact zones or areas with compositional, structural, and property gradients, typically varying from that of the fiber and the matrix material. Characterization of the mechanical properties of interfaces is necessary for understanding the mechanical behavior of scaled-up composites. In fact, the mechanical characteristics of a fiber/resin composite depend mainly on i) the mechanical properties of the component materials, ii) the surface of the fiber, and iii) the nature of the fiber/resin bonding as well as the mode of stress transfer at the interface. Among the many factors that govern the characteristics of composites involving a glass, carbon, natural or ceramic fiber, and a macromolecular matrix, the adhesion between fiber and matrix plays a predominant role. In specific, the stress transfer at the interface requires an efficient coupling between fiber and matrix. Therefore, it is important to optimize the interfacial bonding since a direct linkage between fiber and matrix gives rise to a rigid, low impact resistance composite material.
|
12 |
Éléments finis spéciaux pour l’analyse linéaire et non-linéaire géométrique des structures composites à renforts fibreux / Special finite elements for linear and geometricaly non linear analysis of fiber reinforced composite structuresTiar, Mohamed Amine 29 March 2017 (has links)
La modélisation numérique des structures composites à renfort fibreux de géométrie complexe constitue un axe de recherche majeur afin de prédire correctement leur comportement mécanique. Dans ce contexte, l’étude menée dans ce travail de thèse porte sur le développement de nouveaux éléments finis basés sur une approche numérique multi-échelle, appelée Approche de la Fibre Projetée (AFP). Cette approche a l’avantage de tenir compte de la présence des fibres au sein d’un espace matrice sans les discrétiser, ce qui limite considérablement la taille du système à résoudre. Pour analyser le comportement des structures composites, plusieurs éléments finis 2D et 3D ont été développés et implémentés dans le code ABAQUS via la routine UEL. Plusieurs cas tests de validation sont considérés pour tester la précision et l’efficacité des éléments finis proposés et les résultats obtenus sont globalement en bon accord avec les solutions de référence. De plus, l’intérêt de la nouvelle approche (AFP) est particulièrement mis en exergue en étudiant des structures composites complexe à renfort 3D : une plaque sandwich cousue et une plaque sandwich à âme creuse renforcée par des fibres en forme de « 8 ». / Numerical modeling of composite materials and structures with complex geometry of fiber reinforcement, such as stitched composites, constitutes a major research axis in order to correctly predict their mechanical behavior. Within this context, this study focuses on the development of new linear and nonlinear specific finite elements based on a multiscale numerical approach, called the Projected Fiber Approach (PFA). This numerical approach has the advantage of taking into account the presence of fi bers, long or short and distributed randomly or specifically, within a matrix space without discretizing them. Consequently, the obtained system of equations size is equivalent to that without reinforcement (matrix), which considerably reduces the computational cost. To analyze the linear and geometrically nonlinear behaviors of composite structures, two membrane finite elements, named PFT3 and PFQ4, and a 3D solid finite element, named PFH8, were developed and implemented into the commercial finite element code ABAQUS via the user element subroutine (UEL). Several numerical linear and nonlinear tests are considered to assess the accuracy and efficiency of the proposed composite finite elements, and the obtained results are globally in good agreement with the reference solutions. Moreover, the major interest of the PFA approach is particularly emphasized by studying two 3D complex reinforced composite structures: a stitched sandwich plate and a hollow core sandwich plate reinforced by "8" shape fibers.
|
13 |
Avaliação da resistência adesiva, por meio do teste de microtração, da interface pino de fibras de vidro / cimento / dentina radicular variando-se cimentos, adevivos dentinários e tempo de armazenamento / Microtensile bond strength of the post-resin / resin cement/ root dentin, varying resin cement, dentin bonding system and term water storageTatiany de Mendonça Neto 10 September 2007 (has links)
Avaliou-se, por meio do teste de microtração, a resistência adesiva da interface pino de fibras de vidro /cimento/ dentina radicular, variando-se cimentos, adesivos dentinários e tempo de armazenamento. Foram utilizados dentes caninos humanos permanentes, extraídos por razões periodontais, que tiveram suas coroas seccionadas e as raízes preparadas para receber pinos de fibras de vidro (Fibrekor). Os dentes foram aleatoriamente divididos em grupos de dez, variando a técnica de cimentação adesiva e o tempo de armazenamento. Os cimentos utilizados foram (1) Panavia F, (2) Variolink II, (3) Enforce, com seus respectivos adesivos. Avaliou-se também a influência da aplicação de uma camada do adesivo hidrofóbico Scotchbond Multi-Purpose Plus [SBMP] com o cimento Panavia F e Enforce. Espécimes cimentados com Variolink II, Panavia F com SBMP e Enforce com SBMP foram armazenados em água destilada por três meses. Após a cimentação, as raízes foram seccionadas (longitudinalmente e horizontalmente) com disco diamantado obtendo-se espécimes de 1mm de espessura, dois por terço da raiz. Os espécimes foram submetidos ao teste de microtração e o modo de fratura analisado em microscópio óptico. Os valores médios de resistência (MPa) foram submetidos aos testes ANOVA e Tukey (p < 0,05). A análise estatística mostrou (1) diferenças significativas na resistência adesiva entre cimentos e terços sendo que na média total dos terços, o cimento Variolink II foi superior aos outros cimentos; (2) na análise por terços, o cimento Variolink II mostrou valores estatisticamente superiores para o terço cervical. Os cimentos Panavia F e Enforce apresentaram valores significativamente menores no terço cervical; (3) diferenças significativas na resistência adesiva, com a aplicação do adesivo hidrofóbico, independente da região avaliada; (4) diminuição significativa na resistência adesiva para os cimentos Variolink II e Enforce, após armazenamento em água; (5) após o armazenamento, o cimento Variolink II apresentou diminuição na resistência adesiva no terço cervical e o cimento Enforce nos terços médio e apical. O cimento Panavia F exibiu aumento significativo da resistência adesiva nos terços cervical e médio, e diminuição no terço apical; (6) em microscopia óptica, um padrão de fraturas predominantemente do tipo adesiva para todos os experimentos. / This study evaluated the microtensile bond strengths of the fiber post-resin / resin cement/ root dentin when were varied the resin cement, dentin bonding system and longterm water storage. Were used for this study, human canines teeth extracted for periodontal reasons. The crown was sectioned and root canals were prepared for fiber post-resin (Fibrekor). The teeth were randomly assigned into experimental groups (n = 10) when were varied the resin luting technique and term water storage. The resin cements were (1) Panavia F, (2) Variolink II, (3) Enforce mediated by their respective adhesives. Experimental groups, using Panavia F and Enforce, were prepared in the same way, except that the additional layer of a low-viscosity bonding resin (Scotchbond Multi-Purpose Plus [SBMP]) was placed on the bonded root dentin surface before luting the fiber post-resin. The teeth were stored for 3 months and subsequently prepared for microtensile bond strength testing. Beams of approximately 1mm2 were tested in tension at 0,5mm/mim in a universal testing machine. Fractured surfaces were examined under X 40 stereomicroscope to determine the mode of fracture. The data were divided into cervical, middle and apical regions and analyzed using ANOVA and Tukey\'s test (p < 0,05). The results of tensile bonding strengths showed (1) significant differences among resin cements and root dentin regions, were presented higher mean bond strength values to Variolink II, when compared with others; (2) the cervical third of Variolink II demonstrated higher values, to Panavia F and Enforce demonstrated lower values for that regions; (3) the application of the additional layer of the hydrophobic adhesive resulted in significant improved in the tensile bonding strength; (4) water storage for 3 months produced bond strengths that were significant lower for Variolink II e Enforce; (5) after storage, the Variolink II reduced bond strengths in the cervical third and Enforce in the middle and apical regions. The cervical and middle third of Panavia F presented higher mean bond strength values and apical regions demonstrated lower values; (6) No cohesive fractures within resin cement, fiber-reinforced composite resin post, or root dentin were identified.
|
14 |
Vliv složení mezivrstvy na pevnost adhezního spoje mezi vláknovým a částicovým kompozitem / Effect of Interlayer Composition on Bond Strength between FRC Framework and Composite VeneerIbarra, Jonatanh José January 2010 (has links)
Hlavním cílem této práce je studium aktuálního problému adheze mezi kompozitními materiály, a určení vlivu složení mezivrstvy v pevnosti adhezivního spoje mezi vláknové (FRC) a částicové (PFC) kompozity, používané ve stomatologii. FRC tyčinky byly vytvořené na bázi komerční dimetakrylatové pryskyřice a skleněných S vláken. PFC byl vytvořen ze směsi pryskyřic (bis-GMA a PEGDMA), plněných drceným barnatým sklem. Celkově bylo připraveno a vyzkoušeno 84 vzorků. Vzorky byly rozdělené do pěti hlavních skupin. První skupina byla vytvořena ze série vzorků bez mezivrstvy. Zbylé čtyři skupiny byly rozděleny dle složení mezivrstvy (tloušťky a druhu pryskyřic). Částicové kompozity vzorků se lišily obsahem plniva (0, 10, 40 hm %). FRC tyčinky byly stejné pro všechny vzorky. Univerzální testovací přístroj ZWICK Z010 byl použit k zjištění smykové pevnosti adhezivního spoje všech vzorků. Rastrovací elektronový mikroskop byl použít k pozorování místa porušení. Ze získaných výsledků vyplívá, že s přidáváním mezivrstvy mezi vláknovým a částicovým narůstá smyková pevnost spoje. Důležitost těchto výsledků je způsobená tím, že v posledních letech použití těchto materiálů ve stomatologii narůstá a adheze zůstává jeden z hlavních problémů při klinické praxi.
|
15 |
Distribuição de tensões em próteses parciais fixas posteriores livres de metal com retentores intracoronários: análise em elementos finitos / Stress distribution on metal-free posterior inlay-retained fixed partial dentures: finite element analysisMarcelo Gomes da Silva 23 February 2011 (has links)
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / Para reabilitar a ausência de um elemento dentário posterior, as próteses parciais fixas (PPF) com retentores intracoronários são uma alternativa aos implantes osseointegrados. O objetivo deste estudo foi avaliar a distribuição de tensões nessas próteses com três combinações de materiais: cerâmica de zircônia parcialmente estabilizada por ítria (ZPEI) revestida por cerâmica de fluorapatita (α), cerâmica de dissilicato de lítio (β) ou compósito fibrorreforçado (γ). Na composição α, foram analisadas a presença ou ausência da cerâmica de revestimento na parede cervical das caixas proximais e três variações na área total da seção transversal dos conectores (4 mm de largura x 3,2, 4,2 ou 5,2 mm de altura). Em 8 modelos bidimensionais de elementos finitos, uma carga vertical de 500 N foi aplicada na fossa central do pôntico e as tensões principais máximas (tração) e mínimas (compressão) foram apontadas em MPa. Inicialmente foram avaliados os 6 modelos com PPF de ZPEI e suas variações. Os maiores valores das tensões de tração foram encontrados no terço cervical dos conectores. Quando presente nestas regiões, a cerâmica de revestimento recebeu tensões acima do limite de sua resistência à flexão. Na comparação entre os modelos sem cerâmica de revestimento na parede cervical das caixas proximais, mesmo aquele com conectores de 3,2 x 4 mm, cuja infraestrutura apresentava 2,5 x 3 mm, poderia ser recomendado para uso clínico. Altos valores de tensões de compressão foram registrados entre o terço oclusal e médio dos conectores, correspondente à união entre as cerâmicas, o que poderia ocasionar, devido à flexão, falhas adesivas. Posteriormente, o modelo de ZPEI com a cerâmica de fluorapatita ausente da parede cervical das caixas proximais e área total dos conectores de 4,2 x 4 mm foi comparado aos dois outros materiais com conectores de mesma área. Na PPF de dissilicato de lítio, os valores representaram uma provável violação do limite de sua resistência à flexão. A PPF de compósito fibrorreforçado apresentou tensões bem abaixo do limite de resistência à flexão de sua infraestrutura, mas, como no modelo de ZPEI, tensões compressivas se concentraram com alto valor entre o terço oclusal e médio dos conectores, local de união entre a resina composta e a infraestrutura de fibras. Os resultados mostraram que a cerâmica de dissilicato de lítio e a presença da cerâmica de fluorapatita na parede cervical das caixas proximais deveriam ser contraindicadas para a condição proposta. Parece viável uma área de conectores na infraestrutura de ZPEI com no mínimo 2,5 x 3 mm. A PPF de compósito fibrorreforçado apresenta resistência estrutural para a situação estudada, mas, como também aquelas compostas de ZPEI, aparenta ter como pontos fracos a adesão entre a infraestrutura e o material de cobertura e a própria resistência deste último. / Inlay-retained fixed partial dentures (IRFPD) are an alternative to osseointegrated implants to replace a single missing posterior tooth. The aim of this study was to evaluate the stress distribution within these prostheses with three material combinations: yttria-tetragonal zirconia polycrystal (Y-TZP) ceramic veneered with fluorapatite ceramic (α), lithium-disilicate ceramic (β) or fiber-reinforced composite (γ). In composition α, an analysis was conducted on the presence or absence of the veneering ceramic on the cervical wall of the proximal boxes and three variations in the total area of the connectors cross-section (4 mm in width x 3.2, 4.2 or 5.2 mm in height). In 8 two-dimensional finite element models, a vertical load of 500 N was applied on the central fossa of the pontic. Maximum (tension) and minimum (compression) principal stresses were then shown in MPa. First, the 6 models with Y-TZP fixed partial dentures (FPD) and their variations were evaluated. The highest values of tensile stresses were found at the cervical third of the connectors. When present in these regions, the veneering ceramic received stresses beyond its flexural strength limit. In the comparison among models without veneering ceramic on the cervical wall of the proximal boxes, even the model with connectors of 3.2 x 4 mm, whose framework presented 2.5 x 3 mm, could be recommended for clinical use. High values of compressive stresses were recorded between the middle and occlusal thirds of the connectors, corresponding to the juncture of the ceramics. Owing to flexure, these stresses might lead to adhesive failures. Then, the Y-TZP model without fluorapatite ceramic on the cervical wall of the proximal boxes and total connector area of 4.2 x 4 mm was compared to the other two materials with connectors of the same area. For the lithium-disilicate FPD, the observed values would probably exceed its flexural strength limit. The fiber-reinforced composite FPD presented stresses far below the flexural strength limit of its framework, but, as observed in the Y-TZP model, high values of compressive stresses were concentrated between the middle and occlusal thirds of the connectors, where the juncture of the composite and the fiber framework is located. The results showed that the use of lithium-disilicate ceramics and the presence of fluorapatite ceramics on the cervical wall of the proximal boxes should be contraindicated for the condition proposed. A minimum of 2.5 x 3 mm for the connector area of the Y-TZP framework seems viable. The fiber-reinforced composite FPD presented structural resistance for the situation studied but, as was also the case of the Y-TZP fixed partial dentures, its weak points seem to be the adhesion between the framework and the veneering material, as well as the resistance of the veneering material itself.
|
16 |
Distribuição de tensões em próteses parciais fixas posteriores livres de metal com retentores intracoronários: análise em elementos finitos / Stress distribution on metal-free posterior inlay-retained fixed partial dentures: finite element analysisMarcelo Gomes da Silva 23 February 2011 (has links)
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / Para reabilitar a ausência de um elemento dentário posterior, as próteses parciais fixas (PPF) com retentores intracoronários são uma alternativa aos implantes osseointegrados. O objetivo deste estudo foi avaliar a distribuição de tensões nessas próteses com três combinações de materiais: cerâmica de zircônia parcialmente estabilizada por ítria (ZPEI) revestida por cerâmica de fluorapatita (α), cerâmica de dissilicato de lítio (β) ou compósito fibrorreforçado (γ). Na composição α, foram analisadas a presença ou ausência da cerâmica de revestimento na parede cervical das caixas proximais e três variações na área total da seção transversal dos conectores (4 mm de largura x 3,2, 4,2 ou 5,2 mm de altura). Em 8 modelos bidimensionais de elementos finitos, uma carga vertical de 500 N foi aplicada na fossa central do pôntico e as tensões principais máximas (tração) e mínimas (compressão) foram apontadas em MPa. Inicialmente foram avaliados os 6 modelos com PPF de ZPEI e suas variações. Os maiores valores das tensões de tração foram encontrados no terço cervical dos conectores. Quando presente nestas regiões, a cerâmica de revestimento recebeu tensões acima do limite de sua resistência à flexão. Na comparação entre os modelos sem cerâmica de revestimento na parede cervical das caixas proximais, mesmo aquele com conectores de 3,2 x 4 mm, cuja infraestrutura apresentava 2,5 x 3 mm, poderia ser recomendado para uso clínico. Altos valores de tensões de compressão foram registrados entre o terço oclusal e médio dos conectores, correspondente à união entre as cerâmicas, o que poderia ocasionar, devido à flexão, falhas adesivas. Posteriormente, o modelo de ZPEI com a cerâmica de fluorapatita ausente da parede cervical das caixas proximais e área total dos conectores de 4,2 x 4 mm foi comparado aos dois outros materiais com conectores de mesma área. Na PPF de dissilicato de lítio, os valores representaram uma provável violação do limite de sua resistência à flexão. A PPF de compósito fibrorreforçado apresentou tensões bem abaixo do limite de resistência à flexão de sua infraestrutura, mas, como no modelo de ZPEI, tensões compressivas se concentraram com alto valor entre o terço oclusal e médio dos conectores, local de união entre a resina composta e a infraestrutura de fibras. Os resultados mostraram que a cerâmica de dissilicato de lítio e a presença da cerâmica de fluorapatita na parede cervical das caixas proximais deveriam ser contraindicadas para a condição proposta. Parece viável uma área de conectores na infraestrutura de ZPEI com no mínimo 2,5 x 3 mm. A PPF de compósito fibrorreforçado apresenta resistência estrutural para a situação estudada, mas, como também aquelas compostas de ZPEI, aparenta ter como pontos fracos a adesão entre a infraestrutura e o material de cobertura e a própria resistência deste último. / Inlay-retained fixed partial dentures (IRFPD) are an alternative to osseointegrated implants to replace a single missing posterior tooth. The aim of this study was to evaluate the stress distribution within these prostheses with three material combinations: yttria-tetragonal zirconia polycrystal (Y-TZP) ceramic veneered with fluorapatite ceramic (α), lithium-disilicate ceramic (β) or fiber-reinforced composite (γ). In composition α, an analysis was conducted on the presence or absence of the veneering ceramic on the cervical wall of the proximal boxes and three variations in the total area of the connectors cross-section (4 mm in width x 3.2, 4.2 or 5.2 mm in height). In 8 two-dimensional finite element models, a vertical load of 500 N was applied on the central fossa of the pontic. Maximum (tension) and minimum (compression) principal stresses were then shown in MPa. First, the 6 models with Y-TZP fixed partial dentures (FPD) and their variations were evaluated. The highest values of tensile stresses were found at the cervical third of the connectors. When present in these regions, the veneering ceramic received stresses beyond its flexural strength limit. In the comparison among models without veneering ceramic on the cervical wall of the proximal boxes, even the model with connectors of 3.2 x 4 mm, whose framework presented 2.5 x 3 mm, could be recommended for clinical use. High values of compressive stresses were recorded between the middle and occlusal thirds of the connectors, corresponding to the juncture of the ceramics. Owing to flexure, these stresses might lead to adhesive failures. Then, the Y-TZP model without fluorapatite ceramic on the cervical wall of the proximal boxes and total connector area of 4.2 x 4 mm was compared to the other two materials with connectors of the same area. For the lithium-disilicate FPD, the observed values would probably exceed its flexural strength limit. The fiber-reinforced composite FPD presented stresses far below the flexural strength limit of its framework, but, as observed in the Y-TZP model, high values of compressive stresses were concentrated between the middle and occlusal thirds of the connectors, where the juncture of the composite and the fiber framework is located. The results showed that the use of lithium-disilicate ceramics and the presence of fluorapatite ceramics on the cervical wall of the proximal boxes should be contraindicated for the condition proposed. A minimum of 2.5 x 3 mm for the connector area of the Y-TZP framework seems viable. The fiber-reinforced composite FPD presented structural resistance for the situation studied but, as was also the case of the Y-TZP fixed partial dentures, its weak points seem to be the adhesion between the framework and the veneering material, as well as the resistance of the veneering material itself.
|
17 |
Glass and Jute fibers modified with CNT-based functional coatings for high performance compositesTzounis, Lazaros 16 May 2014 (has links)
Carbon nanotubes are known as one of the strongest materials in nature and since their discovery; they have triggered the scientific interest for fabricating multi-functional polymer composites. However, a well-known problem associated to the incorporation of nanoparticulate materials in polymer matrices is their tendency to agglomerate in order to reduce their surface energy, and the extreme increase of the polymer viscosities (i.e melts, solutions, etc), which makes it very difficult to process them. Polymers can be efficiently reinforced by fibers for applications where high strength and stiffness are required. Micro-scale short fiber reinforced polymer composites have been an alternative way to obtain fiber reinforced composites since the long fiber incorporation is a painful job and not always feasible and easy to produce composites in big scale.
Therefore, use of long glass fibers as the support for depositing CNTs as well as CNTs+other kind of nanoparticles was made, and the resulting interfaces were investigated in detail by single fiber model composites. This approach can bring the CNT functionality, fiber strength and toughness to the final composite, and simultaneously alleviate the manufacturing process from increase of the polymer high viscosities. Finally, very logically the question of whether to improve or destroy the interface integrity comes before implementing the hybrid hierarchical reinforcements in bigger scales, and an output out of this work will be given. Furthermore, several information and functionalities arising from the CNTs at the interphase region will be elucidated like cure monitoring of the epoxy resin matrix, UV-sensing ability, and thermoelectric energy harvesting, giving rise to multi-functional structural composites. CNT-modified natural fibers also have been utillised to fabricate short fiber reinforced composites, and have shown a promising reinforcement effect due to the CNT nanostructured interfaces.
The ‘interface’ in fiber reinforced polymer composites (FRPCs) is known as a very crucial parameter that has to be considered in the design of a composite with desired properties. Interfaces are often considered as surfaces however, they are in fact zones or areas with compositional, structural, and property gradients, typically varying from that of the fiber and the matrix material. Characterization of the mechanical properties of interfaces is necessary for understanding the mechanical behavior of scaled-up composites. In fact, the mechanical characteristics of a fiber/resin composite depend mainly on i) the mechanical properties of the component materials, ii) the surface of the fiber, and iii) the nature of the fiber/resin bonding as well as the mode of stress transfer at the interface. Among the many factors that govern the characteristics of composites involving a glass, carbon, natural or ceramic fiber, and a macromolecular matrix, the adhesion between fiber and matrix plays a predominant role. In specific, the stress transfer at the interface requires an efficient coupling between fiber and matrix. Therefore, it is important to optimize the interfacial bonding since a direct linkage between fiber and matrix gives rise to a rigid, low impact resistance composite material.
|
18 |
Evaluation of adhesive binders for the development of yarn bonding for new stitch-free non-crimp fabricsAl-Monsur, Md. Abdullah, Bardl, Georg, Cherif, Chokri 18 September 2019 (has links)
Non-crimp fabrics (NCFs), especially multi-axial warp-knitted fabrics, are used as reinforcement materials for fiberreinforced composites. The manufacturing of multi-axial warp-knitted fabrics by a conventional stitch bonding process to produce NCF has several disadvantages, such as filament damage, low production speed, yarn disorientation, etc. In order to overcome the existing limitations, the idea of using an adhesive binder to attach the fabric layers is a promising approach, so that the use of stitching yarns can be eliminated. The fundamental investigations presented in this paper show that the selection of the binder material has a major influence on the parameters of the textile products. Whereas the tested hotmelt adhesives offer a short curing time and a small but nevertheless sufficient bonding strength between bonded yarns, the tested reactive adhesives show a bonding strength up to 10 times higher, but at a considerably longer curing time. The reason for the different bonding strength is identified in the different penetration into the yarns. The experiments also show a significant influence of the fiber type and sizing, which needs to be taken into account when selecting fabric binders.
|
19 |
Funktionsintegrative Leichtbaustrukturen für Tragwerke im Bauwesen / Function-integrated lightweight structures in architectureGelbrich, Sandra 17 January 2018 (has links) (PDF)
In den letzten Jahren gewinnt der Leichtbau im Bauwesen im Zuge der Ressourceneinsparung wieder stärker an Bedeutung, denn ohne eine deutliche Steigerung der Effizienz ist zukunfts-fähiges Bauen und Wohnen nur schwer zu bewerkstelligen. Optimiertes Bauen, im Sinne der Errichtung und Unterhaltung von Bauwerken mit geringem Einsatz an Material, Energie und Fläche über den gesamten Lebenszyklus eines Gebäudes hinweg, bedarf des Leichtbaus in punkto Material, Struktur und Technologie.
In der vorliegenden Arbeit wird ein wissenschaftlicher Überblick zum aktuellen Stand der eigenen Forschungen in Bezug auf funktionsintegrativen Leichtbau im Bauwesen gegeben sowie erweiterte Methoden und Ansätze abgeleitet, die eine Konzeption, Bemessung und Erprobung von neuartigen Hochleistungs-Tragstrukturen in Leichtbauweise gestatten. Dabei steht die Entwicklung leistungs-starker und zugleich multifunktionaler Werkstoffkombinatio-nen und belastungsgerecht dimensionierter Strukturkomponenten unter dem Aspekt der Gewichtsminimalität in Material und Konstruktion im Fokus. Ein breit gefächertes Eigen-schaftsprofil für \"maßgeschneiderte\" Leichtbauanwendungen besitzen textilverstärkte Ver-bundbauteile, denn sowohl die Fadenarchitektur als auch die Matrix können in weiten Berei-chen variiert und an die im Bauwesen vorliegenden komplexen Anforderungen angepasst werden. In der vorliegenden Arbeit werden hierzu vor allem Methoden und Lösungen anhand von Beispielen zu: multifunktionalen Faser-Kunststoff-Verbunden (FKV), funktionsintegrier-ten faserverstärkten mineralischen Tragelemente und Verbundstrukturen in textilbewehrter Beton-GFK-Hybridbauweise betrachtet. Von zentraler Bedeutung ist dabei die Schaffung von materialtechnischen, konstruktiven und technologischen Grundlagen entlang der gesamten Wertschöpfungskette – von der Leichtbauidee über Demonstrator und Referenzobjekt bis hin zur technologischen Umsetzung zur Überführung der Forschungsergebnisse in die Praxis. / In the last few years, lightweight construction in the building sector has gained more and more importance in the course of resource saving. Without a significant increase in efficiency, future-oriented construction and resource-conserving living is difficult to achieve. Optimized building, in the sense of the erection and maintenance of buildings with little use of material, energy and surface over the entire life time cycle of a building, requires lightweight design in terms of material, structure and technology.
In this thesis, a scientific overview of the current state of research on function-integrative light-weight construction in architecture is presented. Furthermore, advanced methods and research approaches were developed and applied, that allows the design, dimensioning and testing of novel high-performance supporting structures in lightweight design. The focus is on the development of high-performance, multi-functional material combinations and load-adapted structural elements, under the aspect of weight minimization in material and construction. Textile-reinforced composites have a broad range of material properties for optimized \"tailor-made\" lightweight design applications, since the thread architecture as well as the matrix can be varied within wide ranges and can adapted to the complex requirements in the building industry.
Within the scope of this thesis, methods and solutions are examined in the field of: multifunc-tional fiber-reinforced plastics (FRP), function-integrated fiber-reinforced composites with mineral matrix (TRC) and textile-reinforced hybrid composites (BetoTexG: combination of TRC and FRP). In this connection the creation of material, structural and technological foundations along the entire value chain is of central importance: From the lightweight design idea to the demonstrator and reference object, to the technological implementation for the transfer of the research results into practice.
|
20 |
Mechanical Characterization of Adhesively Bonded Jute Composite Joints under Monotonic and Cyclic Loading ConditionsMittal, Anshul January 2017 (has links) (PDF)
Fiber-reinforced composites comprise an important class of lightweight materials which are finding increasing applications in engineering structures including body components of automobiles and aircraft. Traditionally, synthetic fibers made of glass, carbon, etc. along with a polymeric resin have constituted the most common composites. However, due to environmental concern, occupational health safety considerations, higher cost, etc., research has been focused on substituting synthetic fibers, especially glass fibers with safer, economic and biodegradable natural fibers. Due to the ease of availability and affordability in terms of cost, woven jute mats, among a wide variety of natural fiber-based reinforcements, offer a good choice in combination with a suitable resin such as polyester or epoxy for fabrication of composite laminates. In structural applications, joining of parts made of jute fiber-reinforced composites (JFRCs) would be a natural requirement. Alternatives to joining processes for metals such as welding, riveting, etc. are required for composites. A joining process of high potential is adhesive bonding which has the advantages of reducing stress concentration, permitting fastening of dissimilar materials, etc.
In the present study, adhesively bonded joints of JFRCs and their mechanical behavior are investigated under quasi-static and cyclic loading conditions. Initially, characterization of substrates is carried out under monotonic loading. This is followed by determination of stress-
Strain curves, failure load and mean shear strength of bonded joints as functions of joint curing temperature and overlap length using a two-part structural epoxy adhesive. All tests are carried out according to relevant ASTM standards. It has been observed that higher curing temperatures give rise to only marginally high failure load and mean shear stress at failure compared to curing at room temperature. For a given curing temperature, failure load increases while mean shear strength decreases with respect to overlap length in both types of joints.
As fatigue failure is a crucial consideration in design, the behavior of adhesively bonded JFRC joints is studied for the first time under cyclic loading conditions leading to the commonly-used S-N curve for characterization of failure of materials at different loading-unloading cycles. Interestingly, the fatigue strength for infinite life of adhesively bonded JFRC joints turns out to be approximately 30% of the quasi-static strength, a correlation which usually applies to materials in general. The effect of joint overlap length on fatigue life is studied and it is observed that the above relation between fatigue and quasi static strength is retained for different overlap lengths. Additionally, insights are provided into failure modes of joints under different loading conditions and for varying overlap lengths. Various empirical predictors such as exponent, power and hybrid models fitting the S-N curve are obtained and their relative efficacy (in terms of Coefficient of Determination R2, Adjusted-R2, Akaike’s Information Criterion and Residual Sum of Squares) enumerated in prediction of failure load including quasi-static failure load.
As numerical simulation is an indispensable tool in designing geometrically complex structures under nonlinear conditions including failure and contact, finite element modeling of JFRC substrates, bulk adhesive and adhesively bonded joints has been investigated using implicit and explicit LS-DYNA solvers. In this context, the effects of various modeling parameters (mesh size and loading rate) and details of constitutive models capable of capturing plasticity and failure in an orthotropic composite and isotropic adhesive are discussed. Mesh size has been found to be an important parameter affecting computed results. Finally, a good correlation within ~(4% - 7%) was found between the predicted and experimental results for JFRC substrates, bulk adhesive and adhesively bonded single lap joints.
|
Page generated in 0.0968 seconds