Spelling suggestions: "subject:"fibering maps"" "subject:"fibering gaps""
1 |
Problemas elípticos semilineares com não linearidades do tipo côncavo-convexo / Semilinear elliptic problems with concave-convex nonlinearitiesSousa, Karla Carolina Vicente de 01 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-03T18:04:36Z
No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T10:40:35Z (GMT) No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-06T10:40:35Z (GMT). No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-01 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we study the existence of positive solutions for the following semilinear
elliptic problem with concave-convex nonlinearities
−∆u = λa(x)u
q +b(x)u
p
, x ∈ Ω
u = 0, x ∈ ∂Ω
where Ω is a bounded domain in R
N with smooth boundary and 0 < q < 1 < p < 2
∗−1
(where 2∗−1 = +∞, if N = 1 or N = 2 and 2∗−1 = N+2
N−2
, where N ≥ 3). Furthermore,
λ > 0 is a parameter and a,b : Ω → R are continuous functions which are somewhere
positives, however, such functions may change sign in Ω. / Neste trabalho estudaremos a existência de soluções positivas para o seguinte
problema elíptico semilinear com não linearidades do tipo côncavo-conexo
−∆u = λa(x)u
q +b(x)u
p
, x ∈ Ω
u = 0, x ∈ ∂Ω
onde Ω é uma domínio limitado de R
N , com bordo regular e 0 < q < 1 < p < 2
∗ −1
(onde 2∗ −1 = +∞, se N = 1 ou N = 2 e 2∗ −1 = N+2
N−2
, quando N ≥ 3). Além disso,
λ > 0 é um parâmetro e a,b : Ω → R são funções contínuas que assumem valores
positivos, porém, tais funções podem mudar de sinal em Ω.
|
2 |
Existência de soluções para um problema elíptico usando a Aplicação Fibração / Existence of solutions for an elliptic problem using the Fibering MapsPaula, Julio Cesar de 28 February 2011 (has links)
Made available in DSpace on 2015-03-26T13:45:33Z (GMT). No. of bitstreams: 1
texto completo.pdf: 324170 bytes, checksum: 8c6bbae9f8761ac82f0b17de8be004f0 (MD5)
Previous issue date: 2011-02-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation treat the study of fibrary maps as well as its application, following
work by K. J. Brown and T. F. Wu [see [6]]. There, the authors apply the fibery maps
introduced by P. Drabek and S. I. Pohozaev [see [9]] in order to present a simple proof of the existence of positive solutions for the following class of elliptics problems of the type
(P) { −Δu = λa(x)uq + b(x)up, se x ∈ Ω
u = 0, se x ∈ ∂Ω
when Δu = Σi=N i=1 ∂2u ∂x2i , Ω é a bounded smooth domain of IRN, with 0 < q < 1 < p < N+2 N−2 , λ > 0 e a, b : Ω → IR are smooth sign changing weight functions. / Esta dissertação é dedicada ao estudo da Aplicação Fibração seguindo o trabalho
desenvolvido por Kennedth J. Brown e Tsung-Fang Wu [ver [6]]. Neste artigo os autores utilizam a Aplicação Fibração introduzida por P. Drabek e S. I. Pohozaev [ver [9]] para fornecer uma prova simples de existência de soluções positivas para a classe de problemas elípticos do tipo
(P) { −Δu = λa(x)uq + b(x)up, se x ∈ Ω
u = 0, se x ∈ ∂Ω
onde Δu = Σi=N i=1 ∂2u ∂x2i , Ω é uma região limitada do RN com fronteira suave, com 0 < q < 1 < p < N+2 N−2 , λ > 0 e a, b : Ω → IR são funções reais, suaves que podem mudar de sinal em Ω.
|
3 |
Multiplicidade de soluções para uma classe de problemas elípticos de quarta ordem com condição de contorno de Navier / Multiplicity of solutions for a class of fourth-order elliptic problems under Navier conditionsCavalcante, Thiago Rodrigues 27 February 2018 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2018-03-23T22:13:05Z
No. of bitstreams: 2
Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-26T12:16:44Z (GMT) No. of bitstreams: 2
Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-26T12:16:44Z (GMT). No. of bitstreams: 2
Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In the first two chapters, we consider the following problem
\begin{equation*}
\left \{
\begin{array}{rcll}
\alpha \Delta^{2} u + \beta \Delta u & = & f(x,u)\, & \mbox{in}\,\, \Omega \\
u = \Delta u & = & 0 \, &\mbox{on } \,\,\, \partial \Omega,
\end{array}
\right.
\end{equation*}
where $\displaystyle{\Delta^{2} u = \Delta(\Delta u)-\,\mbox{biharmonic (fourth-order
operator)}}$,
$\alpha > 0$ and $ \beta \in \R.$ The subset $\displaystyle{ \Omega \subset \mathbb{R}^{N}\,
(N \geq 4)}$ is as somooth bounded domain and $\displaystyle{ f \in C(\overline{\Omega}
\times \mathbb{R},\mathbb{R}) }.$ In each of the results obtained, we will consider different
technical hypotheses and characteristics for the nonlinear function $f$ e for the value of the
constant $ \beta. $
In the third chapter, we study an equation of the concave type super linear, of the form:
\begin{equation}
\left \{
\begin{array}{rcll}
\alpha \Delta^{2} u + \beta \Delta u & = & a(x)|u|^{s-2}u + f(x,u)\, & \mbox{in}\,\, \Omega \\
u = \Delta u & = & 0 \, &\mbox{on} \,\,\, \partial \Omega,
\end{array}
\right.
\end{equation}
where $\beta \in (-\infty, \alpha \lambda_{1}).$ We consider that the function $a \in L^{\infty}
(\Omega)$ and $s \in (1,2).$
Finally, in the last chapter we will consider a fourth order problem in which nonlinearity is also of
the convex concave type. More precisely, we study the following class of equations:
\begin{equation}
\left\{ \begin{aligned}
\alpha \Delta^{2} u + \beta \Delta u & = \mu a(x)|u|^{q-2}u + b(x)|u|^{p-2}u&\,\,\,\,\
&\mbox{in}\,\, \Omega \\
u = \Delta u & = 0 & \,\,\,\,&\mbox{on} \,\, \partial \Omega,
\end{aligned}
\right.
\end{equation}
where the parameter $ \mu > 0 $, the powers $ 1 <q <2 <p <2 N / (N - 4) $. In addition we assume
that the functions $ \displaystyle {a, b: \Omega \rightarrow \mathbb {R}}$ are continuous that can
change signal and, $ a ^{+}, b ^{+} \neq 0. $ / Nos dois primeiros Capítulos, consideramos a seguinte classe de problemas:
\begin{equation*}
\left \{
\begin{array}{rcll}
\alpha \Delta^{2} u + \beta \Delta u & = & f(x,u)\, & \mbox{em}\,\, \Omega \\
u = \Delta u & = & 0 \, &\mbox{sobre } \,\,\, \partial \Omega,
\end{array}
\right.
\end{equation*}
onde $\displaystyle{\Delta^{2} u = \Delta(\Delta u)-\,\mbox{biharmônico},}$
$\alpha > 0$ e $ \beta \in \R.$ O subconjunto $\displaystyle{ \Omega \subset
\mathbb{R}^{N}\,(N \geq 4)}$ será um domínio limitado e a não linearidade $\displaystyle{
f \in C(\overline{\Omega} \times \mathbb{R},\mathbb{R}) }.$ Em cada um dos resultados
obtidos, consideraremos hipóteses técnicas e características diferentes para a função não
linear $f$ e para o valor da constante $\beta.$
No terceiro Capítulo, estudamos uma equação do tipo côncavo super linear, da forma:
\begin{equation*}
\left \{
\begin{array}{rcll}
\alpha \Delta^{2} u + \beta \Delta u & = & a(x)|u|^{s-2}u + f(x,u)\, & \mbox{em}\,\,
\Omega \\
u = \Delta u & = & 0 \, &\mbox{sobre } \,\,\, \partial \Omega,
\end{array}
\right.
\end{equation*}
onde $\alpha > 0$ e $\beta \in (-\infty, \alpha \lambda_{1})$. Consideramos que a função
$a \in L^{\infty}(\Omega)$ e que $s \in (1,2).$
Por fim, no último Capítulo vamos considerar um problema de quarta ordem no qual a não
linearidade é do tipo côncavo-convexa. Mais precisamente, estudamos a seguinte classe de
equações:
\begin{equation*}
\left\{ \begin{aligned}
\alpha \Delta^{2} u + \beta \Delta u & = \mu a(x)|u|^{q-2}u + b(x)|u|^{p-2}u&\,\,\,\,\
&\mbox{em}\,\, \Omega \\
u = \Delta u & = 0 & \,\,\,\,&\mbox{sobre} \,\, \partial \Omega,
\end{aligned}
\right.
\end{equation*}
onde o parâmetro $\mu > 0$ e as potências $ 1 < q < 2 < p < 2 N /(N - 4)$. Adicionalmente
supomos que as funções $\displaystyle{a, b : \Omega \rightarrow \mathbb{R} }$ sejam
contínuas podendo trocar de sinal em $\Omega$ e que $a^{+},b^{+} \neq 0.$
|
Page generated in 0.0846 seconds