• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • Tagged with
  • 12
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de la fibronectine du plasma sanguin et de son fragment de 60kDa Purification, stabilité et analyse qualitative des glycosylations /

Poulouin, Laurent Imhoff, Jean-Marie January 2008 (has links) (PDF)
Reproduction de : Thèse de doctorat : Biochimie cellulaire : Cergy-Pontoise : 2002. / Thèse : 2002CERG0158. Titre provenant de l'écran de titre. Bibliogr. f.21-17. Index.
2

Irisine, adipokines et résistance à l'insuline

Huth, Claire 23 April 2018 (has links)
La résistance à l’insuline et l’obésité sont des sujets d’intérêt majeur de la recherche. Le muscle squelettique, étant le site principal de la captation insulinodépendante du glucose, est une cible d’intervention privilégiée dans la lutte contre cette dysfonction métabolique. L’interaction entre le tissu adipeux et le muscle squelettique, par le biais des myokines et des adipokines, joue un rôle dans cette captation insulinodépendante du glucose. Le sujet de ce mémoire porte sur l’étude de l’irisine et de deux adipokines, la leptine et l’adiponectine, et leur lien avec la résistance à l’insuline. Les travaux ont été réalisés chez des hommes non diabétiques. Les résultats ont montré que des niveaux circulants élevés d’irisine sont reliés à un profil métabolique détérioré et que la santé du tissu adipeux est un prédicteur de la sensibilité à l’insuline plus puissant que l’obésité abdominale. / Insulin resistance and obesity are areas of intense research. Skeletal muscle, as the major site of insulin-mediated glucose uptake, is major target in the search for solutions against this metabolic dysfunction. The interaction between adipose tissue and skeletal muscle, through myokines and adipokines, plays a role in insulin-mediated glucose uptake. The subject of this thesis focuses on the study of irisin and two adipokines, leptin and adiponectin, and their relationship with insulin resistance, in middle aged non-diabetic men. Results showed that high levels of circulating irisin are associated to a deteriorated metabolic profile, and that an adipose tissue health secretion profile is a more powerful predictor of insulin sensitivity than abdominal obesity.
3

Incorporation de fibronectine et d'albumine de sérum bovin à un biopolymère composé de polypyrrole et de poly (L-acide lactique) pour promouvoir la régénération tissulaire /

Akkouch, Adil. January 2008 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2008. / Bibliogr.: f. [82]-94. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
4

Modulation de l'expression de la sous-unité [alpha]4 de l'intégrine [alpha]4[bêta]1 par le facteur de transcription Pax 6 dans les cellules épithéliales de la cornée /

Zaniolo, Karine. January 2003 (has links)
Thèse (M.Sc.)--Université Laval, 2003.. / Bibliogr.: f. 90-100. Publié aussi en version électronique.
5

Incorporation de fibronectine et d'albumine de sérum bovin à un biopolymère composé de polypyrrole et de poly (L-acide lactique) pour promouvoir la régénération tissulaire

Akkouch, Adil 13 April 2018 (has links)
Les biomatériaux jouent un rôle majeur dans le développement du génie tissulaire. Au cours des dernières années, les propriétés physiques, chimiques, et en particulier biologiques de ces matériaux ont été optimisées pour différentes applications. Le polypyrrole (PPy) électriquement conducteur et ses matières composites sont utiles pour connecter des composants électriques, des cellules ou des tissus vivants. Des efforts ont été faits pour bio-activer le PPy en incorporant électrochimiquement des biomolécules comme l'héparine et l'acide hyaluronique. Cette méthode est cependant limitée par la petite taille des électrodes, la dénaturation des biomolécules pendant les réactions électrochimiques, le changement des propriétés physiques et surtout la conductivité du polypyrrole. Le but de cette étude est de bio-activer le polypyrrole par l'incorporation de molécules bio-actives telles que la fibronectine et l'albumine de sérum bovin. Ce biomatériau serait d'une grande utilité dans le domaine de l'ingénierie tissulaire et constituerait un support bioactif, biodégradable et électriquement conducteur pour la culture de différents types cellulaires avec de multiples applications biomédicales
6

Greffage de la fibronectine et d'un antibiotique pour limiter les infections sur une prothèse d'amputation transcutanée intra-osseuse

Ghadhab, Souhaila 23 July 2021 (has links)
L'objectif global de cette étude est de fonctionnaliser les surfaces d'alliage de titane Ti6Al4V ELI (Ti) par des molécules bioactives dans le but de prévenir les infections sur une prothèse d'amputation transcutanée intra-osseuse (ITAP). Dans cette optique, deux stratégies ont été élaborées : l'une pour promouvoir l'attachement des cellules de la peau autour de l'implant et l'autre pour prévenir l'adhésion bactérienne à l'interface matériau-tissu. En premier lieu, la surface de Ti a été modifiée par la fibronectine (Fn), une glycoprotéine d'adhésion présente dans la matrice extracellulaire (MEC), qui favorise l'adhésion cellulaire. La Fn a été adsorbée ou greffée sur la surface de Ti. Deux bras d'ancrage différents ont été employés afin de greffer la Fn, soit la dopamine/l'anhydride glutarique (TiDopGA[indice g]Fn) et les phosphonates (TiPhos[indice g]Fn). Ces dernières conduisent à des groupes terminaux d'acide carboxylique sur le substrat, permettant le greffage covalent avec les groupements fonctionnels (NH₂) de la Fn. Le succès de chaque étape de modification a été vérifié par XPS et angle de contact. La quantité de protéine et la disponibilité des sites d'adhésion RGD (arginine-glycine-acide aspartique) de la Fn adsorbée ou greffée sur chacun des bras d'ancrage ont été évaluées par ELISA. L'effet des surfaces modifiées avec la Fn a été évalué sur la prolifération et l'étalement des fibroblastes d'une part et sur la force d'attachement des feuillets dermiques d'autre part. La Fn greffée via les phosphonates a une plus grande bioactivité et une meilleure activité biologique que celle greffée via la dopamine/l'anhydride glutarique ou lorsqu'elle a été adsorbée. La force d'arrachement des feuillets dermiques était significativement plus élevée autour des surfaces greffées de Fn via les phosphonates, par rapport aux surfaces non traitées. Par conséquent, cette étude met en évidence l'importance d'une sélection appropriée du bras d'ancrage pour contrôler étroitement les interactions cellulaires à l'interface tissu/implant. Le second volet de ce projet repose sur la fonctionnalisation de la surface de Ti par la vancomycine (Vanc), une glycopeptide ayant des propriétés antibactériennes. La Vanc a été greffée de façon covalente via les phosphonates (TiPhos[indice g]Vanc) selon une méthodologie similaire à celle utilisée pour greffer la Fn. Le greffage et la stabilité de la Vanc ont été confirmés par XPS et angle de contact. La surface modifiée par la Vanc permet de réduire l'adhésion des bactéries Staphylococcus epidermidis, bactéries responsables de la majorité des cas d'infections cutanées pour les implants percutanés, comparativement à la surface de Ti non traitée. Ces résultats soutiennent l'effet antibactérien des surfaces de Ti lorsqu'elles sont fonctionnalisées par la Vanc de façon covalente. / The overall goal of this study is to functionalize titanium alloys materials (Ti6Al4V ELI) using biomolecules in order to prevent infections on Intraosseous Transcutaneous Amputation Prosthesis (ITAP). In this context, two strategies have been developed: one to promote attachment of skin cells around the implant and the other to reduce bacterial adhesion at the material-tissue interface. First of all, the Ti6Al4V ELI was modified by fibronectin (Fn), an adhesion glycoprotein found in most extracellular matrices, which promotes cell recognition and adhesion. Fn was adsorbed or grafted onto the surface of Ti6Al4V ELI. Two different linkers were used to graft the Fn, dopamine/glutaric anhydride (TiDopGA[subscript g]) and phosphonate (TiPhos[subscript g]). The linking arms lead to terminal carboxylic acid groups on the substrate, allowing covalent grafting with the amine functions of Fn. The success of each modification step was assessed by XPS and contact angle. The quantity of protein and the availability of RGD adhesion sites of the Fn adsorbed or grafted via the two investigated linking arms were evaluated by ELISA. The effect of the Fn-modified surfaces was evaluated on the proliferation and spreading of fibroblast cells and on the attachment strength of the dermal layers. It has been evidenced that Fn grafted via phosphonates has a greater bioactivity and a better biological activity than Fn grafted via dopamine/glutaric anhydride or when adsorbed. The peeling force of the dermal layers was also significantly higher around surfaces grafted with Fn via phosphonates, compared to untreated surfaces. Therefore, this study highlights the importance of appropriate selection of the anchor arm to closely control cellular interactions at the tissue/implant interface. The second part of this study is based on the functionalization of the Ti6Al4V ELI surface by vancomycin (Vanc), a glycopeptide with antibacterial properties. Vanc was covalently grafted via phosphonate (TiPhos[subscript g]Vanc) using a similar methodology to that used to graft Fn. The grafting and stability of the Vanc was confirmed by XPS and contact angle. The Vanc-modified surface reduces the adhesion of Staphylococcus epidermidis bacteria, the bacterium responsible for the majority of skin infections in percutaneous implants, compared to the surface of untreated Ti6Al4V ELI. These results confirm the antibacterial effect of the Ti6Al4V ELI surfaces when covalently functionalized by the Vanc.
7

Bio-conjugaison de la fibronectine sur surface de téflon pour applications dans le domaine vasculaire

Byad, Michaël 24 April 2018 (has links)
Depuis trente ans, des efforts ont été menés dans le domaine de l'ingénierie des matériaux afin de concevoir des appareils médicaux pouvant être en contact avec les tissus humains. Néanmoins l'interaction entre la surface du matériau et l'environnement physiologique entraine la plupart du temps des complications. Le laboratoire d'ingénierie des surfaces est spécialisé dans l'élaboration de surfaces biomimétiques capables d'interagir de manière proactive avec leur environnement. Pour des applications cardiovasculaires, une des stratégies consiste à utiliser des protéines de la matrice extracellulaire, comme la fibronectine, connue pour la promotion de l'adhésion des cellules endothéliales. Dans ce contexte, parce que la bioactivité de la fibronectine est fortement liée à sa conformation, l'objectif est de comparer différentes stratégies d'immobilisation en caractérisant la quantité de fibronectine immobilisée ainsi que son activité biologique. Les précédentes études menées au laboratoire ont souligné le fait que la fibronectine immobilisée par les cystéines présente une meilleur bioactivité que lorsque celle-ci est immobilisée par les groupements lysines qu'elle contient. L'actuel projet porte sur l'étude de l'influence de l'utilisation d'un bras d'ancrage hydrophile ou hydrophobe entre la protéine et la surface sur la bioactivité de la protéine. Les résultats ont d'une part montré l'efficacité des bras d'ancrage dans l'immobilisation de la fibronectine et d'autre part les limites de leur utilisation pour une étude comparative portant sur la quantification et la bioactivité de la protéine.
8

La régulation de l'expression du gène de la poly(ADP-ribose) polymérase-1 (PARP-1) durant la cicatrisation de l'épithélium cornéen

Zaniolo, Karine 12 April 2018 (has links)
La PARP-1 est une enzyme nucléaire qui modifie de façon post-traductionnelle plusieurs protéines nucléaires via son activité de poly(ADP-ribosyl)ation, souvent en réponse aux bris de l'ADN. Elle est ainsi impliquée dans plusieurs fonctions cellulaires vitales, incluant la réparation de l'ADN, la prolifération, la différenciation ainsi que la transcription de l'ADN pour n'en nommer que quelques- unes. Les promoteurs humains, de rat, de souris et de Drosophile du gène de la PARP-1 ont été clones et démontrent une structure commune aux gènes constitutifs (housekeeping). La transcription du gène de la PARP-1 est en partie régulée positivement par les facteurs de transcription Sp1 et Sp3 et négativement par le facteur de transcription NFI. Nous avons récemment démontré que les niveaux d'expression de la PARP-1, Sp1 et Sp3 sont fortement modulés par l'état de la densité et de la différenciation cellulaire chez des cultures primaires de cellules épithéliales de cornée de lapin (CECL). Par conséquent, la PARP-1 pourrait jouer un rôle durant la cicatrisation cornéenne puisqu'elle est fortement influencée durant les événements de migration, prolifération et différenciation qui caractérisent ce phénomène. La PARP-1 joue un rôle d'autant plus spécifique durant la cicatrisation cornéenne. En plus d'être influencée par la densité et la différenciation cellulaire, son expression est également fortement influencée par la présence de la fibronectine (FN). La FN, une protéine de la matrice extracellulaire, est sécrétée de façon massive durant la cicatrisation de l'épithélium cornéen. Considérant la relation étroite qui existe entre l'expression de la PARP-1 et de Sp1, nous avons également envisagé la possibilité que Sp1 soit une cible potentielle de la poly(ADP-ribosyl)ation par la PARP-1. PARP-1 pourrait ainsi réguler la transcription de son propre gène. En conclusion, notre étude a démontrée par quels mécanismes moléculaires la PARP joue son rôle durant la cicatrisation de l'épithélium cornéen. La PARP-1 pourrait ainsi constituer un modérateur de l'expression génique durant la phase hautement prolifique qui caractérise la cicatrisation cornéenne. / Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that post-translationally modifies a variety of proteins through its poly(ADP-ribosyl)ation activity in response to DNA strand break. PARP-1 is thus involved in several vital cellular functions such as DNA repair, cell proliferation and differentiation as well as DNA transcription. The promoter from the human, rat, mouse and Drosophila PARP-1 genes have been identified and cloned. Each of them has a structure common to housekeeping genes. PARP-1 gene transcription is positively regulated by the positive transcription factors Sp1 and Sp3 whereas it is repressed by members of the nuclear factor-l (NFI) family of transcription factors. We recently demonstrated that PARP-1, Sp1 and Sp3 expression was similarly influenced by both cell density and cell differentiation in primary cultures of rabbit corneal epithelial cells (RCECs). Because it may influence the migration, proliferation and differentiation properties of the epithelial cells from the cornea, PARP-1 may therefore play a significant function during corneal wound healing as well. We recently demonstrated that fibronectin, a major component from the extracellular matrix that is transitorily expressed during corneal wound healing, positively influenced the expression and DNA binding of Sp1 in RCECs. Similarly, PARP-1 gene expression strongly responded (positively) to the presence of FN in tissue culture plates, a further evidence that link PARP-1 expression to corneal wound healing as FN is massively secreted during that process. Moreover, and considering the close relationship between PARP-1 and Sp1 expression, we hypothesized that Sp1 could represent a potential targetfor poly(ADP-ribosyl)ation by PARP-1 and thereby alter its overall regulatory influence. We indeed demonstrated that Sp1 could be added polymers of ADPribose by PARP-1, a post-translational modification that also resulted in restricting the positive regulatory influence Sp1 might exert on its downstream target genes. In conclusion, PARP-1 indeed seems to be a potent regulator of gene expression during the highly proliferative phase that characterizes corneal wound healing.
9

Development of fibronectin coatings on polymeric materials : a study of protein-surface interactions

Hugoni, Ludivine 24 April 2018 (has links)
L’adsorption de protéines adhésives telles que la fibronectine (Fn) à la surface d’un dispositif médical suivant son introduction dans le corps joue un rôle critique dans la réponse biologique. Afin de moduler cette réponse, la création de revêtements bioactifs à la surface des matériaux représente une stratégie à adopter. Dans ce contexte, ce projet de recherche vise à développer des revêtements capables de promouvoir des interactions cellulaires spécifiques. Ainsi, des revêtements de fibronectine ont été développés à la surface de polymères présentant un potentiel pour être utilisés comme biomatériau : le film de fluorocarbone (CFx) et des polyetherurethanes (PEUs) à surface modifiée. Le film de CFx est un nano-recouvrement déposé par traitement plasma sur l’acier inoxydable, et a été développé pour éviter la corrosion du métal lors d’un contact à long terme avec le sang. Les modifications surfaciques des PEUs ont quant à elles montré leur capacité à réduire l’adhérence plaquettaire par l’ajout d’oligomères fluorés au PEU de base, ou à promouvoir l’adhérence cellulaire, par l’ajout d’oligomères anioniques. La stabilité de revêtements de fibronectine adsorbée ou greffée à la surface de CFx a tout d’abord été analysée sous différentes contraintes (déformation, condition statique et sous flux). Les résultats ont révélé une homogénéité plus importante pour la Fn greffée que pour l’adsorbée. Les essais biologiques effectués par la suite sur les PEUs ont indiqué que la fibronectine jouait un rôle majeur dans la coagulation sanguine et dans l’activation des cellules inflammatoires. Par conséquent, ce projet de recherche a permis de mieux comprendre les mécanismes d’interaction entre la Fn et la surface des polymères. La pertinence du développement de revêtements stables à la surface de matériaux destinés à être en contact avec le sang et de leur rôle dans l’interaction cellulaire a été mise en évidence comme pouvant influencer la cicatrisation et le succès des implants. / After the introduction of a medical device into the body, adhesive proteins such as fibronectin (Fn) adsorb to the surface of the material and play a critical role in the mediation of biological responses. To modulate these responses, one strategy consists in developing bioactive coatings at the surface of materials. With the aim of promoting cell interactions, this research project focuses on developing fibronectin coatings on different polymeric materials, which presented suitable properties for blood-contacting applications: fluorocarbonated film (CFx) and surface-modified polyuetherurethanes (PEUs). The CFx film is a nano-coating deposited by plasma treatment on stainless steel substrates developed in order to avoid metal corrosion after long-term blood contact. The PEUs surfaces are modified by oligomer blending: a fluorinated oligomer, reducing platelet adhesion, or an anionic one, promoting cell adhesion, were selected for their ability to modulate cell responses. Firstly, fibronectin was adsorbed or grafted on CFx and characterized under different constraints (plastic deformation, static conditions, and under pseudo-physiological fluid flow). The interaction of fibronectin with the CFx nano-coating enabled to evaluate the stability of the coatings and to validate the relevance of their development. The results revealed greater homogeneity for grafted Fn compared to adsorbed Fn. The influence of Fn adsorption on the surface-modified PEUs towards the response of inflammatory cells and the thrombogenic nature of the surfaces were then investigated. The biological tests indicated that fibronectin played a prominent role in thrombus formation and showed differentiated effect on inflammatory cell activity when coated onto the different polymeric substrates. This research increased our knowledge on the surface interactions between Fn and polymers. The relevance for the development of stable biomolecule coatings at the surface of materials for blood-contacting applications and regarding the role of biomolecule coatings on subsequent cell interactions was shown and focused on the possible influence of the wound healing process and on the final outcomes of implants.
10

Fibronectin/phosphorylcholine coatings on fluorocarboned surfaces : a study upon adsorption and grafting processes

Montaño-Machado, Vanessa 24 April 2018 (has links)
Depuis ces dernières décennies, le domaine des biomatériaux a connu un essor considérable, évoluant de simples prothèses aux dispositifs les plus complexes pouvant détenir une bioactivité spécifique. Outre, le progrès en science des matériaux et une meilleure compréhension des systèmes biologiques a offert la possibilité de créer des matériaux synthétiques pouvant moduler et stimuler une réponse biologique déterminée, tout en améliorant considérablement la performance clinique des biomatériaux. En ce qui concerne les dispositifs cardiovasculaires, divers recouvrements ont été développés et étudiés dans le but de modifier les propriétés de surface et d’améliorer l’efficacité clinique des tuteurs. En effet, lorsqu’un dispositif médical est implanté dans le corps humain, son succès clinique est fortement influencé par les premières interactions que sa surface établit avec les tissus et les fluides biologiques environnants. Le recouvrement à la surface de biomatériaux par diverses molécules ayant des propriétés complémentaires constitue une approche intéressante pour atteindre différentes cibles biologiques et orienter la réponse de l’hôte. De ce fait, l'élucidation de l'interaction entre les différentes molécules composant les recouvrements est pertinente pour prédire la conservation de leurs propriétés biologiques spécifiques. Dans ce travail, des recouvrements pour des applications cardiovasculaires ont été créés, composés de deux molécules ayant des propriétés biologiques complémentaires : la fibronectine (FN) afin de promouvoir l’endothélialisation et la phosphorylcholine (PRC) pour favoriser l’hémocompatibilité. Des techniques d’adsorption et de greffage ont été appliquées pour créer différents recouvrements de ces deux biomolécules sur un polymère fluorocarboné déposé par traitement plasma sur un substrat en acier inoxydable. Dans un premier temps, des films de polytétrafluoroéthylène (PTFE) ont été utilisés en tant que surface modèle afin d'explorer l'interaction de la PRC et de la FN avec les surfaces fluorocarbonées ainsi qu’avec des cellules endothéliales et du sang. La stabilité des recouvrements de FN sur l'acier inoxydable a été étudiée par déformation, mais également par des essais statiques et dynamiques sous-flux. Les recouvrements ont été caractérisés par Spectroscopie Photoéléctronique par Rayons X, immunomarquage, angle de contact, Microscopie Électronique de Balayage, Microscopie de Force Atomique et Spectrométrie de Masse à Ionisation Secondaire à Temps de Vol (imagerie et profilage en profondeur). Des tests d’hémocompatibilité ont été effectués et l'interaction des cellules endothéliales avec les recouvrements a également été évaluée. La FN greffée a présenté des recouvrements plus denses et homogènes alors que la PRC quant à elle, a montré une meilleure homogénéité lorsqu’elle était adsorbée. La caractérisation de la surface des échantillons contenant FN/PRC a été corrélée aux propriétés biologiques et les recouvrements pour lesquels la FN a été greffée suivie de l'adsorption de la PRC ont présenté les meilleurs résultats pour des applications cardiovasculaires : la promotion de l'endothélialisation et des propriétés d’hémocompatibilité. Concernant les tests de stabilité, les recouvrements de FN greffée ont présenté une plus grande stabilité et densité que dans le cas de l’adsorption. En effet, la pertinence de présenter des investigations des essais sous-flux versus des essais statiques ainsi que la comparaison des différentes stratégies pour créer des recouvrements a été mis en évidence. D'autres expériences sont nécessaires pour étudier la stabilité des recouvrements de PRC et de mieux prédire son interaction avec des tissus in vivo. / Over the past years, we have perceived the remarkable growth of the field of biomaterials, evolving from simple prosthetics to complex materials with specific bioactivities. Advances in materials science jointed with an improved understanding of biological systems have carried the ability to create synthetic materials, which would modulate and/or stimulate specific biological responses. In this way, it has been possible to greatly improving the performance of biomaterials. Indeed, when a dispositive is implanted in the human body, the clinical success of the biomaterial is influenced by the first interactions its surface establishes with the surrounding biological tissues and fluids. Regarding cardiovascular devices, various coatings have been investigated to modify the surface properties of stents and to improve their clinical efficacy. In this context, coating biomaterials with several molecules having complementary properties is an interesting approach to accomplish different biological targets. However, the elucidation of the interaction between those molecules will be relevant to predict the preservation of their specific properties on the biomaterial surface. In this work, coatings for cardiovascular applications were created containing two molecules with complementary properties: fibronectin (FN) to promote endothelialization and phosphorylcholine (PRC) for hemocompatibility. Adsorption and grafting techniques were used to achieve different coatings containing both molecules on stainless steel substrate previously coated with a fluorocarbon polymer deposited by plasma treatment. Polytetrafluoroethylene films were first used as model surfaces to explore the interaction of FN and PRC with fluorocarbon surfaces as well as with cells and blood. The stability of FN coatings on fluorocarbon/stainless steel substrates was accomplished through plastic deformation, static and under-flow dynamic tests. Coatings were characterized through X-Ray Photoelectron Spectroscopy, immunostaining, water contact angle, Scanning Electron Microscopy, Atomic Force Microscopy and Time of Flight Secondary Ion Mass Spectrometry (imaging and depth profiling analyses). The interaction of coatings with endothelial cells and blood was also assessed. Regarding FN coatings, those where the protein was grafted, presented denser and more homogeneous coatings. In the case of while PRC coatings, those adsorbed resulted in higher homogeneity than those where PRC was chemical activated during the grating process. Surface characterization of FN/PRC was correlated to the biological properties. Coatings where FN was first grafted followed by the adsorption of PRC exhibited the best results for cardiovascular applications: promotion of endothelialization and hemocompatibility properties. Concerning the stability tests, FN grafted exhibited higher stability than FN adsorbed. Indeed, the relevance of investigating under dynamic conditions (under-flow tests) versus static tests as wells as the comparison of different strategies to create coatings were evidenced. Further experiments are required to study the stability of PRC coatings and to enhance the mimicking of the biological environment in order to predict the interaction of the coatings with living tissues in vivo. / En los últimos años hemos sido testigos de un notable crecimiento en el ramo de biomateriales; hemos sido partícipes de la evolución de simples prótesis a materiales complejos con bioactividad específica. Los avances en ciencias de materiales, así como en la comprensión del funcionamiento de sistemas biológicos, han traído consigo la posibilidad de crear materiales sintéticos capaces de modular/estimular respuestas específicas del organismo vivo, con lo cual ha sido posible mejorar significativamente el desempeño clínico de distintos biomateriales. En lo que respecta a dispositivos cardiovasculares, diversos revestimientos han sido investigados para modificar las propiedades de la superficie de stents con el fin de mejorar su eficacia clínica. Efectivamente, cuando un dispositivo médico es implantado en un organismo vivo, su éxito clínico se verá fuertemente influenciado por las primeras interacciones que su superficie establecerá con los tejidos y fluidos biológicos de sus alrededores. La concepción de revestimientos de biomateriales con distintas moléculas con propiedades complementarias ha sido un enfoque interesante en los últimos años para alcanzar diferentes objetivos biológicos. La elucidación de la interacción de las diferentes moléculas entre sí, y con el substrato, tiene alta relevancia en lo que respecta a la predicción de la preservación de propiedades biológicas específicas a cada molécula en cuestión. En este trabajo, se han creado revestimientos para aplicaciones cardiovasculares que contienen dos moléculas con propiedades complementarias: fibronectina (FN) para promover la endotelialización y fosforilcolina (PRC) por sus propiedades de hemocompatibilidad. Con el fin de crear los diferentes revestimientos, se aplicaron distintas técnicas de adsorción y de enlaces químicos entre las dos moléculas bioactivas. Dichos revestimientos fueron creados sobre un polímero de fluorocarbono depositado por tratamiento con plasma sobre acero inoxidable. Durante los primeros trabajos, se utilizaron películas de politetrafluoroetileno como superficies modelo con el fin de explorar la interacción de FN y PRC con superficies de fluorocarbono así como con células y sangre. La estabilidad de los revestimientos de FN en substratos de acero inoxidable recubierto del polímero fluorocarbonado fue investigada por medio de pruebas de deformación, así como pruebas en condiciones estáticas y dinámicas (bajo flujo). Los revestimientos fueron caracterizados por medio de análisis en Espectroscopia Fotoelectrónica de Rayos X, inmunomarcado, ángulo de contacto, Microscopía Electrónica de Barrido, Microscopía de Fuerza Atómica y Espectrometría de Masa de Ionización Secundaria por Tiempo de Vuelo (éste último en análisis de imágenes y perfiles de profundidad). Igualmente, se realizaron pruebas de hemocompatibilidad, y se evaluó la interacción de los revestimientos con células endoteliales. Los revestimientos en los que la FN fue activada químicamente presentaron mayor densidad y homogeneidad que aquéllos donde la proteína fue simplemente adsorbida; mientras que la PRC adsorbida presentó mayor homogeneidad que aquélla que fue activada químicamente. La caracterización de superficie de los revestimientos de FN/PRC fue correlacionada con sus propiedades biológicas. Los revestimientos en los que la FN fue enlazada para posteriormente adsorber la PRC, mostraron los mejores resultados para aplicaciones cardiovasculares: promoción de la endotelialización y propiedades de hemocompatibilidad. En lo que respecta a las pruebas de estabilidad, la FN activada químicamente exhibió mayor estabilidad y revestimientos más densos incluso después de pruebas dinámicas bajo flujo. En efecto, gracias a estos experimentos, se logró poner de manifiesto la relevancia de la presentación de investigaciones de pruebas bajo flujo versus pruebas estáticas; de igual manera, fue posible poner en evidencia la relevancia de comparar diferentes estrategias en la creación de revestimientos con el fin de propiciar óptimas interacciones entre éstos y el organismo vivo. Como perspectivas y trabajos futuros, será requerido estudiar la estabilidad de los revestimientos de PRC, así como estudios biológicos más avanzados con el fin de predecir mejor la interacción de los revestimientos con tejidos in vivo.

Page generated in 0.0421 seconds