Spelling suggestions: "subject:"fictitious domain"" "subject:"afictitious domain""
11 |
Analyse de modèles pour ITER : traitement des conditions aux limites de systèmes modélisant le plasma de bord dans un tokamak / Analysis of models for ITER : treatment of boundary conditions for the edge plasma in a tokamakAuphan, Thomas 18 March 2014 (has links)
Cette thèse concerne l'étude des interactions entre le plasma et la paroi d'un réacteur à fusion nucléaire de type tokamak. L'objectif est de proposer des méthodes de résolution des systèmes d'équations issus de modèles de plasma de bord. Nous nous sommes intéressés au traitement de deux difficultés qui apparaissent lors de la résolution numérique de ces modèles. La première difficulté est liée à la forme complexe de la paroi du tokamak. Pour cela, il a été choisi d'utiliser des méthodes de pénalisation volumique. Des tests numériques de plusieurs méthodes de pénalisation ont été réalisés sur un problème hyperbolique non linéaire avec un domaine 1D. Une de ces méthodes a été étendue à un système hyperbolique quasilinéaire avec bord non caractéristique et conditions aux limites maximales strictement dissipatives sur un domaine multidimensionnel : il est alors démontré que cette méthode de pénalisation ne génère pas de couche limite. La deuxième difficulté provient de la forte anisotropie du plasma, entre la direction parallèle aux lignes de champ magnétique et la direction radiale. Pour le potentiel électrique, cela se traduit par une résistivité parallèle très faible. Afin d'éviter les difficultés liées au fait que le problème devient mal posé quand la résistivité parallèle tend vers 0, nous avons utilisé des méthodes de type asymptotic-preserving (AP). Pour les problèmes non linéaires modélisant le potentiel électrique avec un domaine 1D et 2D, nous avons fait l'analyse théorique ainsi que des tests numériques pour deux méthodes AP. Des tests numériques sur le cas 1D ont permis une étude préliminaire du couplage entre les méthodes de pénalisation volumique et AP. / This thesis deals with the study of wall plasma interactions in a nuclear fusion reactor such as a tokamak. The goal is to propose methods to solve partial differential equations issued from edge plasma models. We focus on two difficulties for the numerical resolution of these models. The first issue concerns the complex shape of the tokamak wall: we choose volume penalty methods. Numerical tests on several penalization methods have been performed on a nonlinear hyperbolic problem. One of these methods has been extended to a quasilinear hyperbolic system with a non characteristic boundary and maximally strictly dissipative boundary conditions on a multidimensional domain: it is proven that this penalty method does not generate any boundary layer. The second question comes from the strong plasma anisotropy between the direction parallel to the magnetic field lines and the radial one. Concerning the electrical potential, this results in a very low parallel resistivity. In order to avoid the troubles due to the ill-posedness of the equations when the parallel resistivity tends to 0, we study asymptotic preserving (AP) methods. For 1D and 2D nonlinear models of the electrical potential, we performed the theoretical analysis and numerical simulations for two AP methods. A preliminary study of the coupling between volume penalty and AP methods is also presented.
|
12 |
Méthodes de domaines fictifs pour les éléments finis, application à la mécanique des structures / Fictitious domain methods for finite element methods, application to structural mechanicsFabre, Mathieu 10 July 2015 (has links)
Cette thèse est consacrée à l’étude de méthodes de domaines fictifs pour les éléments finis. Ces méthodes, initialement conçues pour l’approximation de problèmes d’interactions fluide/structure, consistent à prolonger un domaine réel par un domaine de géométrie simple appelé domaine fictif. On applique ces méthodes à un problème de contact unilatéral sans frottement en petite déformation entre deux corps élastiques séparés par une distance initiale non nulle et possédant par ailleurs des conditions aux bords de type Dirichlet et Neumann. Les deux premiers chapitres sont consacrés à l’introduction des méthodes de domaines fictifs et du problème unilatéral de contact de deux corps élastiques. Le chapitre 3 est consacré à l’analyse a priori et à l’étude numérique de ce problème de contact en domaine fictif avec les conditions aux bords de Dirichlet et de contact qui sont prises en compte à l’aide d’une méthode de type Nitsche. Des résultats théoriques de consistance de la méthode discrète, d’existence et d’unicité sont présentés. Afin d’obtenir une estimation d’erreur a priori optimale, une stabilisation de la méthode de domaine fictif est nécessaire. Ces résultats sont validés numériquement sur des cas tests en dimensions deux et trois. Le chapitre 4 est consacré à l’étude d’un estimateur d’erreur de type résidu d’un problème de contact sans domaine fictif entre un corps élastique et un corps rigide. Les résultats théoriques sont également validés sur deux cas tests numériques : un domaine rectangulaire avec seulement une partie de la zone de contact en contact effectif ainsi qu’un contact de type Hertz en dimensions deux et trois. Le chapitre 5 est une généralisation du chapitre 4 à l’approche domaine fictif et au cas de deux corps élastiques. / This thesis is dedicated to the study of the fictitious domain methods for the finite element methods. These methods, initially designed for the fluid-structure interaction, consist in immersing the real domain in a simply-shaped and a geometrically bigger domain called the fictitious domain. We apply these methods to a unilateral frictionless contact problem in small deformation of two deformable elastics bodies separated by an initial gap and satisfying boundary Dirichlet and Neumann conditions. The first two chapters are devoted to the introduction of these methods and to the unilateral contact problem. The chapter 3 is dedicated to a theoretical study for Dirichlet and contact boundary conditions taken into account with a Nitsche type method. Some theoretical results are presented: the consistency of the discrete method, existence and uniqueness results. To obtain an optimal a priori error estimate, a stabilized fictitious domain method is necessary. These results are numerically validated using Hertz contact in two and three dimensions. The chapter 4 is devoted to the study of a residual-based a posteriori error estimator, without the fictitious domain approach, between an elastic body and rigid obstacle. The numerical study of two tests cases will be performed: a rectangular domain with only a part of the potential zone of contact in effective contact as well as a Hertz contact in two and three dimensions. The chapter 5 is a generalization of the chapter 4 to the fictitious domain approach and the care of to two elastics bodies.
|
13 |
Interaction lithosphère-manteau en contexte de subduction 3D. Relations entre déformation de surface et processus profonds / Lithosphere-asthenosphere interaction in 3d subduction context. Relations between deep processes and surface deformationCerpa Gilvonio, Nestor 09 July 2015 (has links)
A l'échelle de plusieurs dizaines de millions d'années, un système de subduction implique de grandes déformations de la plaque plongeante assimilée un solide viscoélastique, et du manteau supérieur assimilé à un fluide newtonien. L'objectif de ce travail est de développer une stratégie de couplage solide-fluide appliquée à l'étude de l'interaction lithosphère-asthénosphère. Cette stratégie est basée sur l'utilisation de maillages non-conformes aux interfaces et d'une méthode de domaines fictifs (MDF) pour la résolution du problème fluide. Pour l'efficience des modèles 3D, nous employons une formulation simplifiée de la méthode de domaines fictifs par multiplicateurs de Lagrange. La MDF développée est validée par des comparaisons avec des solutions analytiques qui montrent que la méthode est d'ordre 1. La stratégie de couplage est également validée par la comparaison avec d'autres méthodes de couplage solide-fluide. Une première étude est ensuite menée pour analyser l'influence de certains paramètres rhéologiques et cinématiques sur la dynamique d'une subduction contrôlée par les vitesses des plaques. Cette étude, en 2D, concerne plus spécifiquement le mécanisme de plissement périodique du slab lorsque celui-ci est ancré à 660 km de profondeur. Ce mécanisme induit des variations de pendage du slab générant des variations de l'état de contrainte de la plaque chevauchante. Un intérêt particulier est porté sur l'influence de la viscosité du manteau sur les plissements. Dans ce cadre, nous réalisons une application à la subduction andine. / Over the time scale of tens of millions of years, a subduction system involves large deformations of tectonics plates, as one plate sinks into the Earth's mantle. The aim of this work was to develop a soli-fluid coupling method applied to the lithosphere-asthenosphere interaction in the context of subduction zones. Plates were assumed to behave as viscoelastic bodies, while the upper mantle was assimilated to a newtonian fluid. The method developped here is based on the use of non-matching interface meshes and a fictitious domain method (FDM) for the fluid problem. To optimize the computational efficiency of 3D model, we used a simplified version of the Lagrange multipliers fictitious domain method. The developped FDM has been benchmarked with analytical solutions and we showed that this FDM is a first-order method. The coupling method has also been compared to other fluid-solid coupling methods using matching interfaces meshes. A first two-dimensional study was performed in order to evaluate the influence of some rheological and kinematic parameters on the dynamics of a subduction controlled by the velocity of the plates. This study aimed at investigating cyclic slab folding over a rigid 660 km depth transition zone. This folding mechanism induces variations in slab dip that generate variations in the stress state of the overriding plate. We focussed on the influence of the upper mantle viscosity on slab folding. We also applied this model to the Andean subduction zone. Several studies have determined a cyclic variation of the South-American tectonic regime (period of 30-40~Myrs) which may have been related to the slab dip evolution.
|
14 |
Propagation d'ondes acoustiques dans une suspension de grains mobiles immergés : couplage de modèles discret et continu par la méthode des domaines fictifs / Acoustic wave propagation through a suspension of submerged movable grains : coupling discrete and continuous models using the fictitious domain methodImbert, David 29 November 2013 (has links)
Lorsqu'une onde acoustique se propage dans un milieu granulaire, elle est susceptible de provoquer la mobilité des grains, aussi infime soit-elle. Inversement, la mobilité d'un grain dans une matrice fluide peut induire un champ acoustique et dans les deux cas, l'énergie acoustique peut être transférée à la fois au travers des pores et des contacts entre grains. Nous avons mis au point un modèle original permettant de considérer ces deux modes de transfert d'énergie pour simuler la propagation d'ondes acoustiques dans les milieux granulaires immergés. Dans le cas des milieux granulaires secs, l'inertie du fluide est telle que l'énergie transférée dans l'air peut être négligée et le milieu modélisé avec des algorithmes de type "dynamique moléculaire". Au contraire, dans le cas de milieux immergés, l'énergie portée par le fluide ne peut pas être négligée et nous montrons que la méthode des domaines fictifs basée sur les multiplicateurs de Lagrange distribués permet de coupler les équations de la dynamique et l'équation d'onde. Nous utilisons la méthode des éléments finis pour propager l'onde dans le fluide, les grains étant modélisés en 2D par des sphères rigides et incompressibles afin de satisfaire les hypothèses de l'algorithme de dynamique moléculaire. Les résultats du modèle sur des expériences numériques simples mais pour lesquelles existent des solutions analytiques de l'acoustique mettent en évidence la validité du nouveau modèle. Nous en donnons une illustration pour l'étude des interactions subies par un empilement réaliste de multiples grains mobiles soumis à un signal acoustique. / When an acoustic wave propagates through a granular medium, it causes the grains to move, usually very slightly. In the same way, the movement of a grain embedded in a fluid matrix generates an acoustic wave. In both cases, acoustic energy is transmitted by the fluid and by the inter-granular contacts. We have developed a new numerical model for simulating wave propagation in submerged granular media that takes into account these two modes of energy transport. For the case of dry granular media, the grains are embedded in air whose inertia is so low that the energy it carries can be neglected. These media can be modeled with "Molecular Dynamics" or related methods. On the contrary, when granular media are submerged in water, the energy carried by the fluid cannot be neglected, rendering their modelization much more difficult. We use the fictitious domain method with distributed Lagrange multipliers to couple the equation of motion of the grains to the wave equation of the fluid. We use finite elements to propagate the wave in the fluid, and the grains are modeled in 2D by rigid, incompressible spheres compatible with the hypotheses of Molecular Dynamics. To validate the model, we perform series of numerical experiments whose results are compared to analytic solutions from acoustics. We also perform a simulation with hundreds of grains under an incident wave to demonstrate the possibilities of the model.
|
15 |
Sur une méthode numérique ondelettes / domaines fictifs lisses pour l'approximation de problèmes de StefanYin, Ping 25 January 2011 (has links)
Notre travail est consacré à la définition, l'analyse et l'implémentation de nouveaux algorithmes numériques pour l'approximation de la solution de problèmes à 2 dimensions du type problème de Stefan. Dans ce type de problèmes une équation aux dérivée partielle parabolique posée sur un ouvert omega quelconque est couplée avec une autre équation qui contrôle la frontière gamma du domaine lui même. Les difficultés classiquement associés à ce type de problèmes sont: la formulation en particulier de l'équation pour le bord du domaine, l'approximation de la solution liées à la forme quelconque du domaine, les difficultés associées à l'implication des opérateurs de trace (approximation, conditionnement), les difficultés liées aux de régularité fonds du domaine.De plus, de nombreuse situations d'intérêt physique par exemple demandent des approximations de haut degré. Notre travail s'appuie sur une formulation de type espaces de niveaux (level set) pour l'équation du domaine, et une formulation de type domaine fictif (Omega) pour l'équation initiale.Le contrôle des conditions aux limites est effectué à partir de multiplicateurs de Lagrange agissant sur une frontière (Gamma) dite de contrôle différente de frontière(gamma) du domaine (omega). L'approximation est faite à partir d'un schéma aux différences finies pour les dérivées temporelle et une discrétisation à l'aide d'ondelettes bi-dimensionelles pour l'équation initiale et une dimensionnelle pour les multiplicateurs de Lagrange. Des opérateurs de prolongement de omega à Omega sont également construits à partir d'analyse multiéchelle sur l'intervalle. Nous obtenons aussi: une formulation pour laquelle existence de la solution est démontrées, un algorithme convergent pour laquelle une estimation globale d'erreur (sur Omega) est établie, une estimation intérieure prouvant sur l'erreur à un domaine omega, overline omega subset Xi, des estimations sur les conditionnement associés a l'opérateur de trace, des algorithmes de prolongement régulier. Différentes expériences numériques en 1D ou 2D sont effectuées. Le manuscrit est organisé comme suit: Le premier chapitre rappelle la construction des analyses multirésolutions, les propriétés importantes des ondelettes et des algorithmes numériques liées à l'application d'opérateurs aux dérivées partielles. Le second chapitre donne un aperçu des méthodes de domaine fictif classiques, approchées par la méthode de Galerkin ou de Petrov-Galerkin. Nous y découvrons les limites de ces méthodes ce qui donne la direction de notre travail. Le chapitre trois présente notre nouvelle méthode de domaine fictif que l'on appelle méthode de domaine fictif lisse.L'approximation est grâce à une méthode d'ondelettes de type Petrov-Galerkin. Cette section contient l'analyse théorique et décrit la mise en œuvre numérique. Différents avantages de cette méthode sont démontrés. Le chapitre quatre introduit une technique de prolongement régulier. Nous l'appliquons à des problèmes elliptiques en 1D ou 2D.\par Le cinquième chapitre décrit quelques simulations numériques de problème de Stefan. Nous testons l'efficacité de notre méthode sur différents exemples dont le problème de Stefan à 2 phases avec conditions aux limites de Gibbs-Thomson. / Our work is devoted to the definition, analysis and implementation of a new algorithms for numerical approximation of the solution of 2 dimensional Stefan problem. In this type of problem a parabolic partial differential equation defined on an openset Omega is coupled with another equation which controls the boundary gamma of the domain itself. The difficulties traditionally associated with this type of problems are: the particular formulation of equation on the boundary of domain, the approximation of the solution defined on general domain, the difficulties associated with the involvement of trace operation (approximation, conditioning), the difficulties associated with the regularity of domain. Addition, many situations of physical interest, for example,require approximations of high degree. Our work is based on aformulation of type level set for the equation on the domain, and aformulation of type fictitious domain (Omega) for the initialequation. The control of boundary conditions is carried out throughLagrange multipliers on boundary (Gamma), called control boundary, which is different with boundary (gamma) of the domain (omega). The approximation is done by a finite difference scheme for time derivative and the discretization by bi-dimensional wave letfor the initial equation and one-dimensional wave let for the Lagrange multipliers. The extension operators from omega to Omega are also constructed from multiresolution analysis on theinterval. We also obtain: a formulation for which the existence of solution is demonstrated, a convergent algorithm for which a global estimate error (on Omega) is established, interior error estimate on domain omega, overline omega subset estimates on the conditioning related to the trace operator, algorithms of smooth extension. Different numerical experiments in 1D or 2D are implemented. The work is organized as follows:The first chapter recalls theconstruction of multiresolution analysis, important properties of wavelet and numerical algorithms. The second chapter gives an outline of classical fictitious domain method, using Galerkin or Petrov-Galerkin method. We also describe the limitation of this method and point out the direction of our work.\par The third chapter presents a smooth fictitious domain method. It is coupled with Petrov-Galerkin wavelet method for elliptic equations. This section contains the theoretical analysis and numerical implementation to embody the advantages of this new method. The fourth chapter introduces a smooth extension technique. We apply it to elliptic problem with smooth fictitious domain method in 1D and 2D. The fifth chapter is the numerical simulation of the Stefan problem. The property of B-spline render us to exactly calculate the curvature on the moving boundary. We use two examples to test the efficiency of our new method. Then it is used to resolve the two-phase Stefan problem with Gibbs-Thomson boundary condition as an experimental case.
|
Page generated in 0.0649 seconds