• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 8
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 55
  • 29
  • 21
  • 18
  • 15
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Self-tuned indirect field oriented controlled IM drive

Masiala, Mavungu Unknown Date
No description available.
12

Design and implementation of a servo system by Sensor Field Oriented Control of a BLDC motor

Eriksson, Per January 2014 (has links)
A servo system intended to steer antennas on board ships is designed, built and tested. It uses a Brushless Direct Current (BLDC) motor with an encoder to keep track of its position, and Field Oriented Control (FOC) implemented on Toshibas microprocessor TMPM373 in order to control the current flowing to the motor. The servo system will be connected in cascade to another already existing servo system and controlled with two input signals. The first signal determines if the antenna axis should rotate clockwise or counter clockwise. The second signal is a stream of pulses, where each pulse means that the motor should move one encoder point. A printed circuit board is designed and built to complete these tasks. A proportional-integral regulator is used to control the position of the motor, using the position error as the controller input. The servo system is tested. The performance of the resulting servo system is sufficient to satisfy the required position error limit of 0.5 degrees. In order to reduce the periodic disturbances presented in the system in experiments, Iterative Learning Control (ILC) is implemented. It is shown that using ILC further decreases the position error.
13

Implementation Of A Vector Controlled Induction Motor Drive

Acar, Akin 01 January 2004 (has links) (PDF)
High dynamic performance, which is obtained from dc motors, became achievable from induction motors with the recent advances in power semiconductors, digital signal processors and development in control techniques. By using field oriented control, torque and flux of the induction motors can be controlled independently as in dc motors. The control performance of field oriented induction motor drive greatly depends on the correct stator flux estimation. In this thesis voltage model is used for the flux estimation. Stator winding resistance is used in the voltage model. Also leakage inductance, mutual inductance and referred rotor resistance values are used in vector control calculations. Motor control algorithms use motor models, which depend on motor parameters, so motor parameters should be measured accurately. Induction motor parameters may be measured by conventional no load and locked rotor test. However, an intelligent induction motor drive should be capable of identifying motor parameters itself. In this study parameter estimation algorithms are implemented and motor parameters are calculated. Then these parameters are used and rotor flux oriented vector control is implemented. Test results are presented.
14

Energy efficiency improvement of a squirrel-cage induction motor through the control strategy

Khoury, Gabriel 16 January 2018 (has links) (PDF)
Energy efficiency optimization of electric machines is an important research field and is part of the objectives of several international projects such as the European Commission Climate and Energy package which has set itself a 20% energy savings target by 2020, and was extended for 2030 with higher targets. Therefore, this thesis proposes an efficiency optimization method of the Induction Machine (IM) through the variation of the control parameters. To achieve this goal, the flux in the airgap is modified according to an optimal flux table computed off-line for all possible operating points. The flux table is calculated with the best possible accuracy through an improved dynamic model of the IM, developed in these works. The latter avoids the main drawback of the classic dynamic model, by considering the effect of core losses. The core loss model established by Bertotti is used. It depends on the frequency and the amplitude of the magnetic field. The losses are then represented by a variable resistor, continuously evaluated according to the operating point. The established optimal flux table is a function of the operating conditions in terms of torque and speed. Indeed, the results show that the flux can be optimized for torque values less than about half the rated torque, and that this threshold is influenced by the speed. The proposed optimization method is simulated, then tested for the scalar control and the field-oriented control, in order to show the genericity of the proposed approach. The validation is carried on an experimental test bench for two 5.5 kW induction motors of different efficiency standards (IE2 and IE3). The results obtained show the reduction of the losses in the motor, thus an improvement of the overall efficiency while preserving a satisfactory dynamic behavior. Consequently, the optimization of the energy efficiency is validated for the two control structures and for the two studied motors. In addition to the validation of the simulation results, the proposed approach is compared to existing methods to assess its effectiveness
15

Modeling and Control Design of Vsi-Fed Pmsm Drive Systems With Active Load

Mihailovic, Zoran 22 April 1999 (has links)
A field-oriented control design and detailed analysis of a VSI-fed PMSM drive system with active load is done through simulations of the system model, using modern simulation software packages. A new control method for the speed tracking control based on the estimation of the load torque profile is proposed. A new, multilevel modeling approach for creating simulation models of power electronic circuits is developed for easier analysis and faster simulations. It is based on a modular approach wherein each module can be modeled at any level of complexity, while maintaining full compatibility of the modules. The new approach is applied to modeling of the VSI-fed PMSM drive system. The three-phase VSI-fed PMSM drive system model that is developed and experimentally verified is analyzed in the application of a starter/generator, where the load changes dynamically with motor speed. As a result, a detailed analysis of the field-oriented control design of a two stage cascade digital controller is presented, with an emphasis on the new method for the speed control, large-signal and small-signal analyses of several most popular flux-weakening strategies, and sampling delay effects on the system stability. / Master of Science
16

IP core pro řízení BLDC motorů / IP core for BLDC motor control

Hráček, Marek January 2019 (has links)
This diploma thesis is about using vector control (or field-oriented control) of synchronous BLDC and PMSM motors on FPGAs. First part describes basic theory of these motors and how to control them. Then vector control is detailed and its parts as (or Clarke) and Park transformation. Rest of the thesis deals with the design of universal controller with adjustable accuracy in VHDL language. Data is separated from computing part which utilizes custom arithmetic-logic unit. In the last part of the thesis the design is tested in simulator using model of PMSM motor.
17

Direct Torque Control of Resonant Inverter Driven Permanent Magnet Synchronous Motor

Dever, Timothy P. 29 May 2020 (has links)
No description available.
18

Design and Comparison of Induction Motor and Synchronous Reluctance Motor for Variable Speed Applications: Design Aided by Differential Evolution and Finite Element Analysis

Pina Ortega , Alejandro Jose 12 July 2013 (has links)
No description available.
19

Model Predictive Control of Electric Drives -Design, Simulation and Implementation of PMSM Torque Control

Zsolt Pap, Levente January 2018 (has links)
The thesis deals with the design of a permanent magnet synchronous machine controller that isimplemented on an embedded platform to replace the off-the-shelf controller currently being used in theelectric race car of the KTH Formula Student team. Software implementation of the control algorithmwas tested in laboratory environment on the hardware prototype of a 2-level three-phase voltage sourceinverter.Field oriented control and finite control set model predictive control algorithms were implemented insimulation environment. The latter performed better in terms of reducing switching activity and torqueripple, but needs vastly more computational resources due to its nature of being an online optimizationproblem. Trade-off curve of phase current harmonic distortion and switching activity showed that themodel prediction control algorithm performs better in the low frequency range (1-20 kHz). Obtainedsimulation results were used for power electronics component selection.Field oriented control was implemented on a TMS320F28335 DSP. SPI communication was employedto configure gate driver circuits and perform error handling. The DSP program follows interrupt basedorganization and the main control loop runs on the variable frequency of the pulse width modulation.Low voltage test results on three-phase inductive-resistive load showed that the controller outputssinusoidal current. Efficiency measurement, high voltage and motor testing were hindered by interferencefrom the Silicon-Carbide MOSFETs that prohibited correct operation of hardware. / Den här uppsatsen handlar om designen och implementeringen av en motorstyrning för en permanen- magnetiserad synkronmotor, med syfte att ersätta standardmotorstyrningsenheten i KTH Formula Students tävlingsbil. Implementationen av styralgoritmen testades experimentellt tillsammans med en prototyptillverkad frekvensomriktare i labbmiljö. Regleralgoritmer för field oriented control och finite control set model predictive control implementerades och testades i simuleringsmiljö. Den senare algoritmen visade sig prestera bättre i form av lägre vridmomentsoscillationer trots lägre switch-frekvens men den kräver samtidigt mer beräkningskraft. Övertonsinnehållet (THD) i fasströmmarna som funktion av switchfrekvensen undersöktes för de båda regleralgoritmerna, algoritmen för model predictive control gav lägre THD vid lägre frekvenser (1-20 kHz). Simuleringsresultaten användes för att motivera valet av komponenter till frekvensomriktaren. Regleralgoritmen för field oriented control implementerades och testades experimentellt med hjälp av ett utvecklingskort (TMS320F28335) från Texas Instruments. SPI-kommunikation användes för att konfigurera drivkretsana samt för att utläsa felkoder. Experimentalla tester som utfördes på låg spänningsnivå visade att strömmen till lasten var sinusformad. Mätning av verkningsgrad och provning tillsammans med motorn på en högre spänningsnivå gick inte att geno av att de snabba switchförloppen i kiselkarbidtransistorerna störde ut motorstyrningen.
20

Sensorless Hybrid Field-Oriented Control Two-Phase Stepper Motor Driver

Lydell, Emil January 2023 (has links)
Hybrid stepper motors are small electrical motors with high torque production, compared with other electrical motors of the same size. Hybrid stepper motors are reliable in open-loop systems, in Sinusoidal mode, but with a drawback of high power consumption. The power consumption may be reduced by Field-Oriented Control, but this control mode requires a positioning sensor, adding size and cost to the system. This Master’s Thesis explores the possibilities of observer-based Field-Oriented Control on a two-phase hybrid stepper motor without using a positioning sensor, run on a microprocessor and executed during the interrupt scheduling routine, coded in C/C++.

Page generated in 0.0673 seconds