• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 8
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 55
  • 29
  • 21
  • 18
  • 15
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modeling And Simulation Of All-electric Aircraft Power Generation And Actuation

Woodburn, David 01 January 2013 (has links)
Modern aircraft, military and commercial, rely extensively on hydraulic systems. However, there is great interest in the avionics community to replace hydraulic systems with electric systems. There are physical challenges to replacing hydraulic actuators with electromechanical actuators (EMAs), especially for flight control surface actuation. These include dynamic heat generation and power management. Simulation is seen as a powerful tool in making the transition to all-electric aircraft by predicting the dynamic heat generated and the power flow in the EMA. Chapter 2 of this dissertation describes the nonlinear, lumped-element, integrated modeling of a permanent magnet (PM) motor used in an EMA. This model is capable of representing transient dynamics of an EMA, mechanically, electrically, and thermally. Inductance is a primary parameter that links the electrical and mechanical domains and, therefore, is of critical importance to the modeling of the whole EMA. In the dynamic mode of operation of an EMA, the inductances are quite nonlinear. Chapter 3 details the careful analysis of the inductances from finite element software and the mathematical modeling of these inductances for use in the overall EMA model. Chapter 4 covers the design and verification of a nonlinear, transient simulation model of a two-step synchronous generator with three-phase rectifiers. Simulation results are shown
42

Modeling and Control of Dual Mechanical Port Electric Machine

Cai, Haiwei January 2015 (has links)
No description available.
43

A Study of Field-Oriented Control of a Permanent Magnet Synchronous Generator and Hysteresis Current Control for Wind Turbine Application

Baktiono, Surya 27 June 2012 (has links)
No description available.
44

Control Design and Analysis of an Advanced Induction Motor Electric Vehicle Drive

Herwald, Marc A. 20 May 1999 (has links)
This thesis is about the development and performance enhancement of an induction motor electric vehicle drive system. The fundamental operation of the induction motor drive hardware and control software are introduced, and the different modulation techniques tested are described. A software simulation package is developed to assist in the control design and analysis of the drive system. Next, to establish the efficiency gains obtained by using space vector modulation in the improved drive system, an inverter with hysteresis current control is compared to the same inverter with space vector modulation in steady state and on separate driving profiles. A method for determining induction motor harmonic losses is introduced and is based on obtaining the phase current harmonics from sampled induction motor stator phase currents obtained. Using a semi-empirical loss model, the induction motor losses are compared between different pulse width modulation control strategies throughout the torque versus speed operating region. Next, several issues related to the robustness of the control design are addressed. To obtain good performance in the actual vehicle, a new method for driveline resonance compensation is developed and proven to work well through simulation and experiment. Lastly, this thesis discusses the development of a new method to compensate for the gain and phase error obtained in the feedback of the d-axis and q-axis stator flux linkages. Improved accuracy of the measured stator flux linkages will be shown to improve the field oriented controller by obtaining a more accurate measurement of the feedback electromagnetic torque. / Master of Science
45

Estimation and Compensation of Load-Dependent Position Error in a Hybrid Stepper Motor / Estimering och kompensering av lastberoende positionsfel i en elektrisk stegmotor

Ronquist, Anton, Winroth, Birger January 2016 (has links)
Hybrid stepper motors are a common type of electric motor used throughout industry thanks to its low-cost, high torque at low speed and open loop positioning capabilities. However, a closed loop control is often required for industrial applications with high precision requirements. The closed loop control can also be used to lower the power consumption of the motor and ensure that stalls are avoided. It is quite common to utilise a large and costly position encoder or resolver to feedback the position signal to the control logic. This thesis has explored the possibility of using a low-cost position sensor based on Hall elements. Additionally, a sensorless estimation algorithm, using only stator winding measurements, has been investigated both as a competitive alternative and as a possible complement to the position sensor. The thesis work summarises and discusses previous research attempts to adequately measure or estimate and control the hybrid stepper motors position and load angle without using a typical encoder or resolver. Qualitative results have been produced through simulations prior to implementation and experimental testing. The readings from the position sensor is subject to noise, owing to its resolution and construction. The position signal has been successfully filtered, improving its accuracy from 0.56° to 0.25°. The output from the sensorless estimation algorithm is subject to non-linear errors caused by errors in phase voltage measurements and processing of velocity changes. However, the dynamics are reliable at constant speeds and could be used for position control.
46

Field Oriented Control Of A Permanent Magnet Synchronous Motor Using Space Vector Modulated Direct Ac-ac Matrix Converter

Yildirim, Dogan 01 May 2012 (has links) (PDF)
The study designs and constructs a three-phase to three-phase direct AC&ndash / AC matrix converter based surface mounted permanent magnet synchronous motor (PMSM) drive system. First, the matrix converter topologies are analyzed and the state-space equations describing the system have been derived in terms of the input and output variables. After that, matrix converter commutation and modulation methods are investigated. A four-step commutation technique based on output current direction provides safe commutation between the matrix converter switches. Then, the matrix converter is simulated for both the open-loop and the closed-loop control. For the closed-loop control, a current regulator (PI controller) controls the output currents and their phase angles. Advanced pulse width modulation and control techniques, such as space vector pulse width modulation and field oriented control, have been used for the closed-loop control of the system. Next, a model of diode-rectified two-level voltage source inverter is developed for simulations. A comparative study of indirect space vector modulated direct matrix converter and space vector modulated diode-rectified two-level voltage source inverter is given in terms of input/output waveforms to verify that the matrix converter fulfills the two-level voltage source inverter operation. Following the verification of matrix converter operation comparing with the diode-rectified two-level voltage source inverter, the simulation model of permanent magnet motor drive system is implemented. Also, a direct matrix converter prototype is constructed for experimental verifications of the results. As a first step in experimental works, filter types are investigated and a three-phase input filter is constructed to reduce the harmonic pollution. Then, direct matrix converter power circuitry and gate-driver circuitry are designed and constructed. To control the matrix switches, the control algorithm is implemented using a DSP and a FPGA. This digital control system measures the output currents and the input voltages with the aid of sensors and controls the matrix converter switches to produce the required PWM pattern to synthesize the reference input current and output voltage vectors, as well. Finally, the simulation results are tested and supported by laboratory experiments involving both an R-L load and a permanent magnet synchronous motor load. During the tests, the line-to-line supply voltage is set to 26 V peak value and a 400 V/3.5 kW surface mounted permanent magnet motor is used.
47

Avaliação de estratégias de controle do motor de indução monofásico / Evaluation of single phase induction motor control schemes

Oliveira, Jacson Luís de 31 January 2013 (has links)
Made available in DSpace on 2016-12-12T20:27:37Z (GMT). No. of bitstreams: 1 Jacson Luis Oliveira.pdf: 10477972 bytes, checksum: 1b64e6d37c97643852f0678c2a5c6d71 (MD5) Previous issue date: 2013-01-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The goal of the present work is to evaluate control schemes which were developed to control the three-phase induction motor, applied in this work to control the single-phase induction motor. The development of control schemes to control fractional power electrical machines such as the single-phase induction motor has been in evidence due to the needs of improvements on efficiency energy demanded by the market. The constructive aspects of this motor does not allow to apply control schemes directly. Thus, it is necessary to model the single-phase induction motor as a two-phase motor. The model considers coordinates transformations to stationary systems. To fix the asymmetry of the motor windings, a symmetry transformation is required to apply the control schemes. Classical control schemes based on field-oriented control and direct torque control were evaluated. Numerical simulations were performed to review how these control schemes work and to verify the feasibility of experimental implementation. For control schemes based on field-oriented control, the rotor flux oriented control and the stator flux oriented control were evaluated. Some constraints on the classical direct torque control were noted due to the high switching frequencies. An alternative to the classical direct torque control to allow constant switching frequencies was evaluated. Experimental results were found by using a hardware system based on digital signal processor. / Este trabalho tem por objetivo avaliar estratégias de controle, originalmente desenvolvidas para controlar o motor de indução trifásico, aqui aplicadas ao controle motor de indução monofásico. O desenvolvimento de estratégias que abordam o controle de motores de potência fracionária tal como o motor de indução monofásico tem tido maior destaque devido a necessidade de melhorias na eficiência energética exigida pelo mercado. As características construtivas deste motor não permitem a aplicação direta destas estratégias, de modo que o modelamento do motor de indução monofásico deve ser realizado afim de obter o modelo em sua configuração bifásica. O modelo considera a transformação de coordenadas para um sistema de eixo estacionário e, para compensar a assimetria dos enrolamentos uma transformação de simetria é necessária para a aplicação das estratégias de controle. Foram avaliadas estratégias clássicas baseadas no controle por orientação de campo e controle direto de torque. Um estudo de simulação numérica é realizado para avaliar o comportamento destas estratégias de controle e verificar a viabilidade de implementação prática. Nas estratégias de controle por orientação de campo são analisados o controle vetorial com orientação por fluxo de rotor e o controle vetorial com orientação por fluxo de estator. Observou-se que há restrições na implementação prática de estratégias de controle baseadas no controle direto de torque clássico devido as altas freqüências de chaveamento requeridas. Uma alternativa ao controle direto de torque clássico que permite o uso de frequências fixas de chaveamento é avaliada. Resultados experimentais foram obtidos utilizando uma plataforma de hardware com processador digital de sinais.
48

Control Of High Power Wound Field Synchronous Motor Drives - Modelling Of Salient Pole Machine, Field Oriented Control Using VSI, LCI And Hybrid LCI/VSI Converters

Jain, Amit Kumar 11 1900 (has links) (PDF)
This thesis proposes control schemes and converter configurations for high power wound field synchronous motor (WFSM) drives. The model for a salient pole WFSM in any general rotating reference frame is developed which can be used to derive models along known rotor (dq) and stator flux (MT) reference frames. Based on these models, the principle of sensor-less stator flux oriented field-oriented control (FOC) for salient pole WFSM is developed. So far in the literature, control of cylindrical rotor machine only has been addressed and the effects of saliency have generally been neglected. The performance of the proposed sensor-less FOC has been demonstrated by experimentally operating a 15.8 HP salient pole WFSM using a three-level IGBT based voltage source inverter (VSI). The principle of FOC has been later extended to the control of current source load commutated inverter (LCI) fed salient pole WFSM drives, where the drawbacks present in conventional self-control method such as rigorous off-line calculation for generation of look up tables, coupling between flux and torque control etc. are eliminated. This thesis also proposes the combination of a VSI with the LCI power circuit to overcome the different disadvantages that are present in the existing LCI topology. Firstly, a novel starting scheme is proposed, where the LCI fed WFSM is started with the aid of a low power auxiliary VSI converter in a smooth manner with sinusoidal motor currents and voltages. This overcomes the difficulties of the present complex dc link current pulsing technique that has drawbacks such as pulsating torque, long starting time etc. In a second mode of operation, it is shown that the VSI can be connected to the existing LCI fed WFSM drive as a harmonic compensator in On-The-Fly mode; this will make the terminal stator current and voltage sinusoidal apart from cancellation of torque pulsations thus improving the drive performance. The above two schemes have potential as retrofit for existing drives. It is possible to combine both the advantages, mentioned above, by permanently connecting the VSI with the LCI power circuit to feed the WFSM. This proposed hybrid LCI/VSI drive can be regarded as a universal solution for high power synchronous motor drives at all power and speed ranges.
49

FPGA Based Control of Multiple Electric Machines for Marine Propulsion Systems / FPGA-baserad styrning av flertal elektriska maskiner för marina drivsystem

Weideskog, Simon January 2024 (has links)
This master thesis addresses the control of electric propulsion motors in a marine context. The focus lies mainly on the implementation of field oriented control (FOC) in a field programmable gate array (FPGA). The hypothesis is that FPGAs provide performance advantages over microcontroller-based control solutions by enabling parallel processing. Zparq AB, a startup specializing in electric marine propulsion, serves as the industry partner for this project. They develop sustainable alternatives to traditional fossil fuel powered propulsion, and the aim is to develop every included part of their electric propulsion systems inhouse. That makes the development of an FPGA-based motor control solution relevant to their goal. The research question focuses on how multiple marine propulsion motors can be controlled from a single FPGA. To answer this, the study investigates relevant engineering aspects such as reference frame transformations, motor control strategies, pulse width modulation (PWM) methods and technological aspects of modern FPGA architectures. For developing the motor controller, a Digilent Arty Z7-20 FPGA board is used. In the design process, all included functions are written as code in a hardware description language (HDL). This approach aims at maintaining complete insight in all details of the solution. Two variants of conventional FOC are developed; one with position feedback from an encoder and one sensorless. The developed motor controller is tested by controlling a brushless direct current (BLDC) motor, and the results prove the functionality of the encoder-based variant. They also show a latency of less than 15 microseconds and indicate the feasibility of the chosen approach. The modularity of the FPGA is demonstrated by successfully controlling two motors, using two copies of the developed solution in a single FPGA. A discussion on combining FPGA-based controllers with wide bandgap (WBG) semiconductors is also included, where the main discussed advantage is high switching frequency. In conclusion, the results and insights from the project contribute to future development of FPGA-based motor control solutions, both within Zparq and the research field. The insights regarding the specific chosen approach for the FPGA development can also be useful for similar projects. / Detta masterarbete behandlar styrning av elektriska motorer i ett marint kontext. Fokus ligger huvudsakligen på implementeringen av fältorienterad styrning (FOC) i en ifält-programmerbar grindmatris (FPGA). Hypotesen är att FPGAer erbjuder prestandafördelar jämfört med mikrokontroller-baserade styrlösningar, genom att möjliggöra parallella beräkningsprocesser. Zparq AB, ett startup som specialiserar sig på elektriska marina drivsystem, är industripartner för detta projekt. De utvecklar hållbara alternativ till traditionell fossildriven framdrift och målet är att på egen hand utveckla alla ingående delar i deras elektriska drivsystem. Det gör att utvecklingen av en FPGA-baserad lösning för motorstyrning är relevant inom ramen för deras mål. Forskningsfrågan fokuserar på hur ett flertal motorer för marin framdrift kan styras från en enda FPGA. För att svara på detta undersöks relevanta tekniska aspekter såsom koordinattransformationer, motorstyrningsstrategier, metoder för pulsbreddsmodulering (PWM) samt teknologiska aspekter av moderna FPGA-arkitekturer. För utvecklingen av motorstyrningen används ett Digilent Arty Z7-20 FPGA-kort. I designprocessen formuleras alla inkluderade funktioner som kod i ett hårdvarubeskrivande språk (HDL). Detta tillvägagångssätt syftar till att ha god insyn i hela lösningen, ner på detaljnivå. Två varianter av konventionell FOC utvecklas; en med positionsfeedback från vinkelgivare och en sensorlös. Den utvecklade motorstyrningen testas genom att driva en borstlös likströmsmotor (BLDC) och resultaten visar på den vinkelgivarbaserade variantens funktionalitet. De visar även att fördröjningen är under 15 mikrosekunder, samt på genomförbarheten av det valda tillvägagångssättet. Modulariteten i FPGAn demonstreras genom att framgångsrikt styra två motorer med hjälp av två kopior av den utvecklade lösningen i en och samma FPGA. En diskussion kring att kombinera FPGA-baserad styrning och halvledare med brett bandgap (WBG) är också inkluderad, där den huvudsakliga fördelen som diskuteras är hög switchfrekvens.svis bidrar resultaten och insikterna från projektet till framtida utveckling av FPGA-baserade lösningar för motorstyrning, både inom Zparq och övriga forskningsfältet. Insikterna från det specifika valda tillvägagångssättet för FPGA-utvecklingen kan även de vara användbara i liknande projekt.
50

Field Oriented Current Control with Harmonic Injection in a Six-Phase Induction Machine

Shan, Xinyue January 2021 (has links)
As a new type of machine, the multi-phase machine has the advantages ofhigher power rating, higher fault tolerance capability and more degrees offreedom to control compared with the traditional machine. Aiming at runninga multi-phase machine with different phase-pole configurations smoothly,a new method called harmonic plane decomposition is presented. Thisproject focuses on applying harmonic plane decomposition to the modellingand analysis of a six-phase machine. The parameters of the machine wereidentified in both the first and fifth harmonic planes. The machine modelusing harmonic plane decomposition method is built in Matlab/Simulink. Asimulation based on the indirect rotor field oriented control of the machine isthen performed. The simulation result shows that the machine could switchbetween different phase-pole configurations without causing too much speedripple. Debugging and testing a prototype control board is conducted. Thecontrol strategy of the machine is tested on the testbench. The machine couldoperate as a six-phase machine successfully. / Som en ny typ har flerfasmaskinen fördelarna, inklusive högre effekt, högrefeltolerans och fler frihetsgrader att styra jämfört med den traditionella maskinen.Med sikte på att köra en flerfasmaskin med olika faspolskonfigurationersmidigt presenteras en ny metod som kallas harmonisk plan sönderdelning.Detta projekt fokuserar på att tillämpa harmonisk plan sönderdelning på modelleringoch analys av en sexfasmaskin. Maskinens parametrar identifieradesi både det första och det femte harmoniska planet. Maskinmodellen medharmonisk plan sönderdelning är byggd i Matlab/Simulink. En simuleringbaserad på den indirekta rotorfältorienterade styrningen av maskinen utförssedan, och resultatet visar att maskinen kan växla mellan olika faspolskonfigurationerutan att orsaka oacceptabel hastighetsrippling. Felsökning ochtestning av en prototypstyrplatta utförs också, och maskinens styrstrategi testaspå testbänken. Sammantaget kan maskinen fungera som en sexfasmaskinframgångsrikt.

Page generated in 0.202 seconds