Spelling suggestions: "subject:"fieldeffect"" "subject:"fields:effect""
111 |
Superconductivity in two-dimensional crystalsEl Bana, Mohammed Sobhy El Sayed January 2013 (has links)
Since the first isolation of graphene in 2004 interest in superconductivity and the superconducting proximity effect in monolayer or few-layer crystals has grown rapidly. This thesis describes studies of both the proximity effect in single and fewlayer graphene flakes, as well as the superconducting transition in few unit cell chalcogenide flakes. Optical and atomic force microscopy and Raman spectroscopy have been used to characterise the quality and number of molecular layers present in these flakes. Graphene structures with superconducting Al electrodes have been realised by micromechanical cleavage techniques on Si/SiO2 substrates. Devices show good normal state transport characteristics, efficient back-gating of the longitudinal resistivity, and low contact resistances. Several trials have been made to investigate proximity-induced critical currents in devices with junction lengths in the range 250-750 nm. Unfortunately, no sign of proximity supercurrents was observed in any of these devices. Nevertheless the same devices have been used to carefully characterise proximity doping, (due to the deposited electrode), and weak localisation/anti-localisation contributions to the conductivity in them. In addition this work has been extended to investigations of the superconducting transition in few unit-cell dichalcogenide flakes. Four-terminal devices have been realised by micromechanical cleavage from a 2H-NbSe2 single crystal onto Si/SiO2 substrates followed by the deposition of Cr/Au contacts. While very thin NbSe2 flakes do not appear to conduct, slightly thicker flakes are superconducting with an onset ܶ that is only slightly depressed from the bulk value (7.2K). The resistance typically shows a small, sharp, high temperature transition followed by one or more broader transitions, which end in a wide tail to zero resistance at low temperatures. These multiple transitions appear to be related to disorder in the layer stacking rather than lateral inhomogeneity. The behaviour of several flakes has been characterised as a function of temperature, applied field and back-gate voltage. The resistance and transition temperatures are found to depend weakly on the gate voltage. Results have been analysed in terms of available theories for these phenomena.
|
112 |
Theory, modelling and implementation of graphene field-effect transistorTian, Jing January 2017 (has links)
Two-dimensional materials with atomic thickness have attracted a lot of attention from researchers worldwide due to their excellent electronic and optical properties. As the silicon technology is approaching its limit, graphene with ultrahigh carrier mobility and ultralow resistivity shows the potential as channel material for novel high speed transistor beyond silicon. This thesis summarises my Ph.D. work including the theory and modelling of graphene field-effect transistors (GFETs) as well as their potential RF applications. The introduction and review of existing graphene transistors are presented. Multiscale modelling approaches for graphene devices are also introduced. A novel analytical GFET model based on the drift-diffusion transport theory is then developed for RF/microwave circuit analysis. Since the electrons and holes have different mobility variations against the channel potential in graphene, the ambipolar GFET cannot be modelled with constant carrier mobility. A new carrier mobility function, which enables the accurate modelling of the ambipolar property of GFET, is hence developed for this purpose. The new model takes into account the carrier mobility variation against the bias voltage as well as the mobility difference between electrons and holes. It is proved to be more accurate for the DC current calculation. The model has been written in Verilog-A language and can be import into commercial software such as Keysight ADS for circuit simulation. In addition, based on the proposed model two GFET non-Foster circuits (NFCs) are conducted. As a negative impedance element, NFCs find their applications in impedance matching of electrically small antennas and bandwidth improvement of metasurfaces. One of the NFCs studied in this thesis is based on the Linvill's technique in which a pair of identical GFETs is used while the other circuit utilises the negative resistance of a single GFET. The stability analysis of NFCs is also presented. Finally, a high impedance surface loaded with proposed NFCs is also studied, demonstrating significant bandwidth enhancement.
|
113 |
Expression of cohesin proteins and nano-architectural changes in rectal mucosa to assess risk of colon cancer based on field carcinogenesisDavis, Ari B. 22 January 2016 (has links)
With 50,310 related deaths this year, colorectal cancer (CRC) has emerged as the second largest cause of cancer related deaths among Americans. While 70 million Americans are considered at-risk of developing CRC, it is highly curable if detected early. Cohesin proteins, which hold sister chromatids together during replication, have emerged as a potential biomarker in multiple cancer lines. Because of their probable role in DNA replication, DNA repair, chromatin nano-architecture, and gene expression, this paper assessed whether cohesion proteins could be used as a potential biomarker for colorectal cancer risk stratification. While cohesin protein mutations have been reported in different cancers and involved in chromosomal instability, its role in early cancer formation has yet to be observed. Using immunohistochemical and Quantitative Real Time PCR analysis, this thesis assessed the protein and RNA expression levels of cohesin proteins SA-1, NIPBL, and SMC3 from human biopsies at different stages and locations of colorectal cancer development. The results showed that SA-1, a structural cohesion subunit, was significantly (p<0.01) down regulated in cancerous compared to normal tissue. The SA-1 protein was also down regulated in the involved mucosa adjacent to CRC polyps. The cohesion loading protein, NIPBL, was also significantly (p<0.01) under expressed in cancerous versus normal tissue. The RNA expression analysis of rectal mucosa showed that SMC3 and SA-1 was over expressed two fold in patients harboring hyperplastic and adenomous polyps, giving evidence that cohesin proteins are differentially expressed throughout the field of carcinogenesis. Our results demonstrate for the first time that cohesion dysregulation is an early event in human colorectal cancer development and may serve as an important biomarker of field carcinogenesis.
|
114 |
Ionizing Radiation Effects on Graphene Based Field Effects TransistorsAlexandrou, Konstantinos January 2016 (has links)
Graphene, first isolated in 2004 by Andre Geim and Konstantin Novoselov, is an atomically thin two-dimensional layer of hexagonal carbon that has been extensively studied due to its unique electronic, mechanical, thermal and optical properties. Its vast potential has led to the development of a wide variety of novel devices such as, transistors, solar cells, batteries and sensors that offer significant advantages over the conventional microelectronic ones.
Although graphene-based devices show very promising performance characteristics, limited has been done in order to evaluate how these devices operate in a radiation harsh environment. Undesirable phenomena such as total dose effects, single event upsets, displacement damage and soft errors that silicon-based devices are prone to, can have a detrimental impact on performance and reliability. Similarly, the significant effects of irradiation on carbon nanotubes indicate the potential for related radiation induced defects in carbon-based materials, such as graphene. In this work, we fabricate graphene field effect transistors (GFETs) and systematically study the various effects of ionizing radiation on the material and device level. Graphene grown by chemical vapor deposition (CVD) along with standard lithographic and shadow masking techniques, was used for the transistor fabrication. GFETs were subjected to different radiation sources, such as, beta particles (electron radiation), gamma (photons) and ions (alpha, protons and Fe particles) under various radiation doses and energies. The effects on graphene’s crystal structure, transport properties and doping profile were examined by using a variety of characterization tools and techniques. We demonstrate not only the mechanisms of ionized charge build up in the substrate and displacement damage effects on GFET performance, but also that atmospheric adsorbents from the surrounding environment can have a significant impact on the radiation hardness of graphene. We developed different transistor structures that mitigate these effects and performed computer simulations to enhance even further our understanding of radiation damage. Our results show that devices using a passivation layer and a shielded gate structure were less prone to irradiation effects when compared to the standard back-gate GFETs, offering less performance degradation and enhanced stability over prolonged irradiation periods. This is an important step towards the development of radiation hard graphene-based devices, enabling operation in space, military, or other radiation sensitive environments.
|
115 |
Putting Molecules into Molecular ElectronicsChiu, Chien-Yang January 2011 (has links)
This thesis comprises eight chapters in two parts: the first part, chapters 1 to 6, details the design, synthesis, self-assembly and electrical properties of a new class of contorted polyheteroaromatic molecules, and the chapters 7 and 8 in the second part describes the design and fabrication of the first nanoscale field-effect transistor for single-molecule kinetics study.
Chapter 1 is an introductory chapter. It first introduces the concept of organic photovoltaics (OPV), including the operation principles, important parameters, device structures, and relevant studied small molecules for the active layer in OPV devices. The second part of the chapter will be an overview of single-molecule biosensors involving various techniques and some important aspects on the design and fabrication. Chapter 2 details the development of a new synthetic methodology for polyheteroaromatic compounds. As one example, contorted dibenzotetrathienocoronenes (c-DBTTC) have been efficiently synthesized in three steps with high yields (>80%). Importantly this class of molecules displays an unusual intermolecular stacking in solid state and intimate interaction with n-type materials (TCNQ and C60) due to their shape-shifting ability. Chapter 3 will describe an unusual molecular conformation in highly fluorinated contorted hexa-cata-hexabenzocoronenes (c-HBC) via the fluorine-fluorine repulsive interaction. Chapter 4 describes the self-assembly properties of a new class of materials, chalcogenide-fused c-DBTTC, investigated by grazing incidence X-ray diffraction (GIXD), fluorescence microscopy and scanning electron microscopy (SEM). In chapter 5 a reticulated heterojunction OPV device applying c-DBTTC as the p-type active layer will be detailed. Combining the excellent self-assembly of c-DBTTC with the patterned graphene electrodes gives improved field-effect mobility in devices and will be described in chapter 6.
In chapter 7, a field-effect transistor using a carbon nanotube (CNTFET) will be introduced. DNA hybridization kinetics will be detected using this "label-free" nanoscale device that represents a breakthrough in the field of single-molecule techniques by delivering high sensitivity and bandwidth. In chapter 8, a basic scientific research concerning Debye screening in buffer solution will be demonstrated utilizing above-mentioned DNA devices. Again, this nanoscale device uses its ability of single-molecule detection to correlate Debye length with buffer concentrations and charge distances, respectively; the correlations will serve as important references for the design of nanoscale biosensors using carbon nanotubes.
|
116 |
Single-Molecule Carbon Nanotube Field-Effect Transistors for Genomic ApplicationsTrocchia, Scott January 2018 (has links)
Single-molecule carbon nanotube-based field-effect transistors are promising all-electronic devices for probing interactions of various biological and chemical molecules at the single- molecule level. Such devices consist of point-functionalized carbon nanotubes which are charge sensitive in the vicinity of a generated defect on the nanotube sidewall. Of particular interest is the characterization of the kinetic rates and thermodynamics of DNA duplex formation through repeated association (hybridization) and dissociation (melting) events on timescales unmatched by conventional single-molecule methods. In this work, we study the kinetics and thermodynamics of DNA duplex formation with two types of single-walled nanotubes: CVD-grown and solution-processed. In both assessments, we are able to extract kinetic and thermodynamic parameters governing the hybridization and melting of DNA oligonucleotides. In the latter case, devices are spun onto a wafer surface from an organic suspension, revealing consistent electrical characteristics. Significant effort is made to expand this work to wafer-level, in an effort to make the fabrication manufacturable.
|
117 |
Hierarchical dynamics of individual RNA helix base pair formation and disruptionHon, Jason J. January 2017 (has links)
This thesis explores the RNA folding problem using single-molecule field effect transistors (smFETs) to measure the lifetimes of individual RNA base-pairing rearrangements. In the course of this research, considerable computational, chemical, and engineering contributions were developed so that the single-molecule measurements could be conducted and quantified. These advancements have allowed, on the basis of the smFET data collected herein, the quantification of a kinetic model for RNA stem-loop structures which has been generalized to quantitatively explore the phenomenological observation that an RNA found in the bacillus subtilis strain acts as a metabolite-sensing switch, allowing RNA polymerase to transcribe the messenger RNA when the metabolite is present and preventing transcription when the metabolite is absent. Together, the data presented quantify a simple model for the base pairing rearrangements that underlie RNA folding.
|
118 |
Clinical implementation of MOSFETs for entrance dose in-vitro dosimetry with high energy photons for external beam radiation therapyMorton, Jason January 2006 (has links)
In external beam radiotherapy quality assurance is carried out on the individual components of the treatment chain. The patient simulating device, planning system and linear accelerators are tested regularly according to set protocols developed by national and international organizations. Even though these individual systems are tested errors can be made in the transfer between systems. The best quality assurance for the system is at the end of the treatment planning chain. In-vivo dosimetry measures the dose to the target volume through indirect measures at the end of the treatment planning chain and is therefore the most likely method for picking up errors which might occur earlier in the chain. Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) have been shown to have a similar error in estimating entrance dose for in-vivo dosimetry to diodes, but no studies have been done clinically with entrance dose in-vivo dosimetry with MOSFETs. The time savings for using MOSFETs makes them preferable to TLD's. Due to their small size and versatility in other applications they are useful as more than dedicated in-vivo dosimetry systems using diodes. Clinical implementation of external beam in-vivo dosimetry would add another use to the MOSFETs without purchasing more specialized equipment. My studies have shown that MOSFETs can be used clinically for external beam in-vivo dosimetry using entrance dose measurements. After the MOSFET measurement system was implemented using a custom built aluminium build up cap clinical measurements were performed. A total of 23 patients and 54 fields were studied. The mean for all clinical measurements was 1.3 %, with a standard deviation of 2.6 %. Results were normally distributed around a mean with skewness and kurtosis as -0.39 and 0.34 respectively. For breasts the mean was 1.8 %, with a standard deviation of 2.7 %. For prostates and hips the mean was 1.3 % with a standard deviation of 2.9 %. These results are similar to studies conducted with diodes and TLD's. From these results one can conclude that MOSFETs can be used for entrance dose in-vivo dosimetry and are no worse than diodes or TLD's in terms of their measurement accuracy. / Thesis (M.Sc.)--School of Chemistry and Physics, 2006.
|
119 |
Investigation of SiC Based Field Effect Sensors with Gas Sensitive Metal Oxide Layers for Hydrogen and Hydrocarbon Gas Sensing at High TemperaturesKandasamy, Sasikaran, s3003480@student.rmit.edu.au January 2008 (has links)
This PhD thesis sets out to investigate novel Silicon Carbide (SiC) based field effect devices (Schottky and transistor structures), with gas sensitive layers for monitoring hydrogen and propene gases at high temperatures. The devices developed by the author were shown to exhibit sensitivities at least 1~2 orders of magnitude (voltage shift, ¢V) higher than those reported in literature. Not only did the author seek to investigate the gas sensing potential of such devices, but also he set out to study, analyse and establish the gas interaction mechanism of these novel sensors. High temperature tolerant hydrogen and hydrocarbon sensors are required in numerous applications such as: aerospace, nuclear power plant, space exploration and exhaust monitoring in automobiles. Monitoring these gases in a reliable and efficient manner is of great value in these applications, not only from a safety point of view but also for economical reasons. Hence there is an absolute necessity for simple, efficient and high performance sensors not only for monitoring and leak detection but also to function as part of a safety device to prevent accidents. The proposed sensor structure of combining SiC with gas sensitive oxide layers allow them to be operated at high temperatures, making them extremely appealing for direct or in-situ monitoring applications. The microstructural analysis performed using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Rutherford Backscattering Spectroscopy (RBS) provides no evidence of inter-diffusion between different layers, in spite of the sensors being annealing at 650 in O2, H2 and C3H6 atmospheres for approximately 50hrs. Samples in different conditions (as deposited, annealed and tested) were compared. The electrical properties of the MROSiC (current-voltage, I-V and capacitance-voltage, C-V characteristics) and MESFET (drain current-source drain voltage (ID-VSD) and transfer, (ãID-H2 concentration) characteristics) devices were measured in the presence and absence of H2 and C3H6. Several parameters such as barrier height, saturation currents, pinch-off voltages and channel conductance were determined from the electrical characteristics, and their influence on the device performance was studied. The authorfs proposed gas interaction model based on energy band diagram is well supported by the experimental data obtained.
|
120 |
Mobility enhancement for organic thin-film transistors using nitridation methodKwan, Man-chi. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
Page generated in 0.2859 seconds