• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 34
  • 32
  • 16
  • 13
  • 9
  • 9
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 312
  • 46
  • 45
  • 40
  • 37
  • 35
  • 32
  • 32
  • 29
  • 28
  • 26
  • 26
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Space Weather Prediction Using Ground-Based Observations / 地上望遠鏡による宇宙天気予報

Seki, Daikichi 23 March 2021 (has links)
学位プログラム名: 京都大学大学院思修館 / 京都大学 / 新制・課程博士 / 博士(総合学術) / 甲第23343号 / 総総博第16号 / 新制||総総||3(附属図書館) / 京都大学大学院総合生存学館総合生存学専攻 / (主査)教授 山敷 庸亮, 教授 寶 馨, 准教授 浅井 歩 / 学位規則第4条第1項該当 / Doctor of Philosophy / Kyoto University / DFAM
162

Thermal and Nano-Additive Based Approaches to Modify Porosity, Crystallinity, and Orientation of 3D-Printed Polylactic Acid

Liao, Yuhan 15 May 2023 (has links)
No description available.
163

Hybrid in-process and post-process qualification for fused filament fabrication

Saleh, Abu Shoaib 21 July 2023 (has links)
No description available.
164

Study on Forming and Resistive Switching Phenomena in Tantalum Oxide for Analog Memory Devices / アナログメモリ素子応用に向けたタンタル酸化物におけるフォーミングおよび抵抗変化現象に関する研究

Miyatani, Toshiki 23 March 2023 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第24622号 / 工博第5128号 / 新制||工||1980(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 白石 誠司, 准教授 小林 圭 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
165

Creation of controlled polymer extrusion prediction methods in fused filament fabrication. An empirical model is presented for the prediction of geometric characteristics of polymer fused filament fabrication manufactured components

Hebda, Michael J. January 2019 (has links)
This thesis presents a model for the procedures of manufacturing Fused Filament Fabrication (FFF) components by calculating required process parameters using empirical equations. Such an empirical model has been required within the FFF field of research for a considerable amount of time and will allow for an expansion in understanding of the fundamental mathematics of FFF. Data acquired through experimentation has allowed for a data set of geometric characteristics to be built up and used to validate the model presented. The research presented draws on previous literature in the fields of additive manufacturing, machine engineering, tool-path programming, polymer science and rheology. Combining these research fields has allowed for an understanding of the FFF process which has been presented in its simplest form allowing FFF users of all levels to incorporate the empirical model into their work whilst still allowing for the complexity of the process. Initial literature research showed that Polylactic Acid (PLA) is now in common use within the field of FFF and therefore was selected as the main working material for this project. The FFF technique, which combines extrusion and Computer Aided Manufacturing (CAM) techniques, has a relatively recent history with little understood about the fundamental mathematics governing the process. This project aims to rectify the apparent gap in understanding and create a basis upon which to build research for understanding complex FFF techniques and/or processes involving extruding polymer onto surfaces.
166

Creation of controlled polymer extrusion prediction methods in fused filament fabrication. An empirical model is presented for the prediction of geometric characteristics of polymer fused filament fabrication manufactured components

Hebda, Michael J. January 2019 (has links)
This thesis presents a model for the procedures of manufacturing Fused Fila ment Fabrication (FFF) components by calculating required process parameters using empirical equations. Such an empirical model has been required within the FFF field of research for a considerable amount of time and will allow for an ex pansion in understanding of the fundamental mathematics of FFF. Data acquired through experimentation has allowed for a data set of geometric characteristics to be built up and used to validate the model presented. The research presented draws on previous literature in the fields of additive manufacturing, machine engi neering, tool-path programming, polymer science and rheology. Combining these research fields has allowed for an understanding of the FFF process which has been presented in its simplest form allowing FFF users of all levels to incorporate the empirical model into their work whilst still allowing for the complexity of the process. Initial literature research showed that Polylactic Acid (PLA) is now in common use within the field of FFF and therefore was selected as the main working mate rial for this project. The FFF technique, which combines extrusion and Computer Aided Manufacturing (CAM) techniques, has a relatively recent history with lit tle understood about the fundamental mathematics governing the process. This project aims to rectify the apparent gap in understanding and create a basis upon which to build research for understanding complex FFF techniques and/or pro cesses involving extruding polymer onto surfaces.
167

Numerical Analysis of Droplet and Filament Deformation for Printing Process

Hasan, Muhammad Noman 16 September 2014 (has links)
No description available.
168

Probing contaminated aerosol clouds using remote filament induced breakdown spectroscopy

Daigle, Jean-François 20 April 2018 (has links)
Une technique de télédétection par spectroscopie de plasma induite par filamentation (R-FIBS pour remote filament-induced breakdown spectroscopy) est utilisée pour sonder un nuage d’aérosols aqueux contenant des sels métalliques en solution. Nous avons démontré expérimentalement que cette technique peut être utilisée efficacement pour caractériser à distance la composition d’un nuage d’aérosols. En effet, la fluorescence caractéristique de tous les ions métalliques a été observée. De plus, ces raies d’émission étroites excitées par un plasma à faible densité ont pu être identifiées simultanément sans recouvrement spectral. Les résultats obtenus démontrent qu’il est possible d’identifier et distinguer simultanément tous les composants métalliques dissous dans un tel nuage. La technique a également été testée avec succès à une distance de 70 m sur un nuage aqueux contenant du chlorure de sodium. / Remote Filament Induced Breakdown Spectroscopy (R-FIBS) was used for probing a cloud of aqueous aerosols containing a mixture of dissolved metallic salts. We demonstrated experimentally that it can be used as a sensitive sensing technique to remotely retrieve the composition of microdroplets in clouds located at a distance. In fact, fluorescence from all the metallic ions dissolved was observed. Moreover, these spectrally narrow atomic transitions excited by the low density plasma did not show any signal overlap. These characteristic spectra demonstrate that R-FIBS can be used to simultaneously recognize and distinguish every single metallic constituent dissolved inside such a cloud. The technique has been successfully tested for long range field test of 70 m with an aerosol cloud of droplets containing sodium chloride.
169

Process/Structure/Property Relationships of Semi-Crystalline Polymers in Material Extrusion Additive Manufacturing

Lin, Yifeng 14 March 2024 (has links)
Material Extrusion additive manufacturing (MEX) represents the most widely implemented form of additive manufacturing due to its high performance-cost ratio and robustness. Being an extrusion process in its essence, this process enables the free form fabrication of a wide range of thermoplastic materials. However, in most typical MEX processes, only amorphous polymers are being used as feedstock material owing to their smaller dimensional shrinkage during cooling and well-stablished process/structure/property (P/S/P) relationship. Semi-crystalline polymers, with their crystalline nature, possess unique properties such as enhanced mechanical properties and improved chemical resistance. However, due to the inherent processing challenges in MEX of semi-crystalline polymers, the P/S/P relationships are much less established, thus limits the application of semi-crystalline polymers in MEX. The overall aim of this thesis is to advance the understanding of P/S/P relationship of semi-crystalline polymers in MEX. This is accomplished through both experimental and simulation-based research. With a typical commodity semi-crystalline polymer, Poly (ethylene terephthalate) (PET), selected as the benchmark material. First, we experimentally explored the MEX printing of both neat and glass fiber (GF) reinforced recycled PET (rPET). Excellent MEX printability were shown for both neat and composite materials, with GF reinforced parts showing a significant improved mechanical property. Notably, a gradient of crystallinity induced by a different toolpathing time was highlighted. In the second project, to further investigate the impact of MEX parameter on crystallinity and mechanical properties, a series of benchmark parts were printed with neat PET and analyzed. The effect of part design and MEX parameter on thermal history during printing was revealed though a comparative analysis of IR thermography. Subsequent Raman spectroscopy and mechanical test indicated that crystallinity developed during the MEX process can adversely affects the interlayer adhesion. In the third project, a 3D heat transfer model was developed to simulate and understand the thermal history of MEX feedstock material during printing, this model is then thoroughly validated against the experimental IR thermography data. While good prediction accuracy was shown for some scenarios, the research identified and discussed several unreported challenges that significantly affect the model's prediction performance in certain conditions. In the fourth project, we employed a non-isothermal crystallization model to directly predict the development of crystallinity based on given temperature profiles, whether monitored experimentally or predicted by the heat transfer model. The research documented notable discrepancies between the model's predictions and actual crystallinity measurements, and the potential source of the error was addressed. In summary, this thesis explored the MEX printing of semi-crystalline polymer and its fiber reinforced composite. The influence of MEX parameters and part designs on the printed part's thermal history, crystallinity and mechanical performance was then thoroughly investigated. A heat transfer model and a non-isothermal crystallization model were constructed and employed. With rigorous validation against experimental data, previously unreported challenges in MEX thermal and crystallization modeling was highlighted. Overall, this thesis deepens the understanding of current semi-crystalline polymer's P/S/P relationship in MEX, and offers insights for the optimization and future research in the field of both experiment and simulation of MEX. / Doctor of Philosophy / Material extrusion additive manufacturing (MEX), also known as fused filament fabrication (FFF), is a popular form of 3D printing known for its cost-effectiveness and versatility in creating objects from plastic materials. Traditionally, MEX utilizes amorphous polymers because they are less prone to shrinkage and thus easier to print. However, semi-crystalline polymers, offer enhanced strength and chemicals resistance, yet they pose significant challenges in printing due to a limited understanding of their process/structure/property (P/S/P) relationships in MEX. This research aims to improve our understanding of P/S/P relationships of semi-crystalline polymers in MEX. The study utilizes a typical semi-crystalline polymer, Poly (ethylene terephthalate) (PET), as the benchmark material. The study begins with the exploration of the MEX printing of recycled PET (rPET) and its glass fiber composite, finding that with appropriate MEX parameters, both feedstocks are highly printable, and the incorporation of glass fibers substantially increased the strength of the printed parts. Subsequently, a comprehensive investigation regarding the intricate relationship between crystallinity development, mechanical properties, and the MEX printing process is conducted. Our research revealed that the MEX process and the design of the part both considerably affect the crystallinity of the final part, thereby influencing its mechanical properties. In the third chapter, a 3D heat transfer model is constructed to better understand and predict the temperature evolution of materials during MEX printing. Most importantly, the modeling results are rigorously validated against experimental data, showing promising results. However, it also reveals challenges in precisely predicting the temperature of parts under certain conditions. The research then evaluates the applicability of Nakamura non-isothermal crystallization model for MEX printing scenarios. It is found that this model underestimates crystallinity in MEX, primarily because it does not account for shear-induced crystallization, a critical factor in the process. This finding underscores the necessity for more advanced models that can effectively capture the complex dynamics of MEX. In summary, this dissertation significantly enhances our understanding of the behavior of semi-crystalline polymers in MEX printing. It sheds light on the complex relationship between the printing process, the structure of the material, and the final properties of the printed object. This work not only advances our knowledge in 3D printing but also paves the way for more sophisticated modeling approaches, optimizing the MEX process and expanding its potential applications.
170

Filament-induced nonlinear fluorescence spectroscopy of trace gaseous pollutants in air

Kamali, Yousef 17 April 2018 (has links)
En principe, un laser femtoseconde peut être utilisé pour distinguer simultanément plusieurs molécules différentes dans l'air. L'idée principale de cette thèse est la détection à distance et la distinction de traces de polluants, tels que le méthane, en utilisant une technique de spectroscopic non linéaire de fluorescence induite par filamentation. Un système laser femtoseconde mobile est utilisé pour détecter à distance des traces de méthane dans l'atmosphère à l'extérieur et en plein jour (avec forte radiation solaire). Également, une méthode comprenant un système d'optique adaptative fonctionnant en boucle fermée est investiguée en tant que moyen d'augmenter significativement le signal de fluorescence pour des applications de télédétection basée sur la filamentation.

Page generated in 0.0388 seconds