• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 32
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 80
  • 71
  • 66
  • 63
  • 50
  • 30
  • 24
  • 23
  • 21
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Evaluation of CFD predictions using thermal field measurements on a simulated film cooled turbine blade leading edge

Mathew, Sibi 16 February 2011 (has links)
Computations and experiments were run to study adiabatic effectiveness and thermal field contours for a simulated turbine blade leading edge. The RKE and SST k-[omega] turbulence models were used for the computational simulations. Predictions of RKE model for laterally averaged adiabatic effectiveness matched the experimental values. The computational simulations showed different flowfield for the coolant exiting the stagnation line row of holes. Both the experiments and SST k-[omega] simulations predicted coolant separation at the stagnation plane. Also, the downstream spreading of the coolant exiting the stagnation row of exit holes was better predicted by the SST k-[omega] model. At the stagnation plane, experimental thermal field measurements showed greater diffusion of the coolant into the mainstream than predicted by both turbulence models. Reasons for increased diffusion were examined. Thermal field comparison downstream of the offstagnation row of exit holes showed that the computational simulations and the experiments had the same general shape for the offstagnation coolant jet. But the computational simulations predicted greater diffusion of coolant in the direction normal to the surface than seen in the experiments. / text
32

Preliminary Study On The Impact Of Impingement On The Effectiveness Of Film Cooling In The Presence Of Gas Path Pressure Gradient

Peravali, Anil 01 January 2006 (has links)
Impingement is the most commonly used method of cooling in the hot stages of gas turbines. This is often combined with film cooling to further increase the cooling performance. The mainstream flow where in the coolant films discharge often has large stream wise pressure variations. All existing studies on coupled film and impingement cooling concentrated on the effect of the film depletion on the impingement heat transfer. This study investigates the impact of impingement on film cooling, where the jets impinging on a flat plate are depleted through arrays of film cooling holes in the presence of pressure gradient in the main gas path. The main characteristic of the test setup is that there is an impingement wall on the backside of the film effusion wall. The fluid used for both impingement flow and main flow is air. The impingement flow is heated as opposed to the usual practice of heating mainflow, and the array of film holes are configured under the impingement jet hole arrays such that there is no direct impingement on the film holes. The static pressure variations and Mach number (0.01 to 0.3) in the mainstream underneath the flat plate are controlled by inserts with varying flow area. The detailed temperature distribution on the film-covered surface is measured using the Temperature Sensitive Paint (TSP) technique, and film cooling effectiveness is calculated from the measurements. Results are presented for averaged impingement jet Reynolds numbers of 5000 and 8000. The effect of impingement on film effectiveness is studied by comparing the results from the two cases: one where film flow is directly supplied from a plenum and the other where the post- impingement flow is depleted through film effusion holes. The results are presented for cylindrical film cooling holes which are inclined at angles of 20 deg and 30 deg with respect to the target plate surface. The variation of the effectiveness of the film hole arrays along the mainstream are studied in detail. It is observed that the impingement through jet effects the pressure distribution on the target plate with film holes, which in turn affects the blowing rates of each row. The change in the blowing ratios because of a different pressure distribution on the impingement side of the target plate causes the effectiveness to change. From the results it is observed that the farther rows of impingement are affected by the pressure distribution underneath the film holes and have more flow through the film cooling rows, this increases the inlet flow of the films which increase the blowing ratios and in turn decreases the effectiveness of the film cooling holes. The pressure distribution and the change of effectiveness are studied in detail.
33

A Full Coverage Film Cooling Study: The Effect of an Alternating Compound Angle

Hodges, Justin 01 January 2015 (has links)
This thesis is an experimental and numerical full-coverage film cooling study. The objective of this work is the quantification of local heat transfer augmentation and adiabatic film cooling effectiveness for two full-coverage film cooling geometries. Experimental data was acquired with a scientific grade CCD camera, where images are taken over the heat transfer surface, which is painted with a temperature sensitive paint. The CFD component of this study served to evaluate how well the v2-f turbulence model predicted film cooling effectiveness throughout the array, as compared with experimental data. The two staggered arrays tested are different from one another through a compound angle shift after 12 rows of holes. The compound angle shifts from ?=-45° to ?=+45° at row 13. Each geometry had 22 rows of cylindrical film cooling holes with identical axial and lateral spacing (X/D=P/D=23). Levels of laterally averaged film cooling effectiveness for the superior geometry approach 0.20, where the compound angle shift causes a decrease in film cooling effectiveness. Levels of heat transfer augmentation maintain values of nearly h/h0=1.2. There is no effect of compound angle shift on heat transfer augmentation observed. The CFD results are used to investigate the detrimental effect of the compound angle shift, while the SST k-? turbulence model shows to provide the best agreement with experimental results.
34

Coupled Usage Of Discrete Hole And Transpired Film For Better Cooling Performance

Torrance, Michael 01 January 2012 (has links)
Electricity has become so ingrained in everyday life that the current generation has no knowledge of life without it. The majority of power generation in the United States is the result of turbines of some form. With such widespread utilization of these complex rotating machines, any increase in efficiency translates into improvements in the current cost of energy. These improvements manifest themselves as reductions in greenhouse emissions or possible savings to the consumer. The most important temperature regarding turbine performance is the temperature of the hot gas entering the turbine, denoted turbine inlet temperature. Increasing the turbine inlet temperature allows for increases in power production as well as increases in efficiency. The challenge with increasing this temperature, currently the hottest temperature seen by the turbine, is that it currently already exceeds the melting point of the metals that the turbine is manufactured from. Active cooling of stationary and rotating components in the turbine is required. Cooling flows are taken from bleed flows from various stages of the compressor as well as flow from the combustor shell. This cooling flow is considered wasted air as far as performance is concerned and can account for as much as 20% of the mass flow in the hot gas path. Lowering the amount of air used for cooling allows for more to be used for performance gain. Various technologies exist to allow for greater turbine inlet temperatures such as various internal channel features inside of turbine blades, film holes on the surface to cool the outside of the airfoil as well as thermal barrier coatings that insulate the airfoils from the hot mainstream iv flow. The current work is a study of the potential performance impact of coupling two effusion technologies, transpiration and discrete hole film cooling. Film cooling and transpiring flows are individually validated against literature before the two technologies are coupled. The coupled geometries feature 13 film holes of 7.5mm diameter and a transpiring strip 5mm long in the streamwise direction. The first coupled geometry features the porous section upstream of the film holes and the second features it downstream. Both geometries use the same crushed aluminum porous insert of nominal porosity of 50%. Temperature sensitive paint along with an ‘adiabatic’ Rohacell surface (thermal conductivity of 0.029W/m-K) are used to measure adiabatic film cooling effectiveness using a scientific grade high resolution CCD camera. The result is local effectiveness data up to 50 film hole diameters downstream of injection location. Data is laterally averaged and compared with the baseline cases. Local effectiveness contours are used to draw conclusions regarding the interactions between transpiration and discrete hole film cooling. It is found that a linear superposition method is only valid far downstream from the injection location. Both coupled geometries perform better than transpiration or the discrete holes far downstream of the injection location. The coupled geometry featuring the transpiring section downstream of the film holes matches the transpiration effectiveness just downstream of injection and surpasses both transpiration and film cooling further downstream.
35

Surface Measurements And Predictions Of Full-coverage Film Cooling

Natsui, Gregory 01 January 2012 (has links)
Full-coverage film cooling is investigated both experimentally and numerically. First, surface measurements local of adiabatic film cooling effectiveness and heat transfer augmentation for four different arrays are described. Reported next is a comparison between two very common turbulence models, Realizable k-ε and SST k-ω, and their ability to predict local film cooling effectiveness throughout a full-coverage array. The objective of the experimental study is the quantification of local heat transfer augmentation and adiabatic film cooling effectiveness for four surfaces cooled by large, both in hole count and in non-dimensional spacing, arrays of film cooling holes. The four arrays are of two different hole-to-hole spacings (P/D = X/D = 14.5, 19.8) and two different hole inclination angles (α = 30◦ , 45◦ ), with cylindrical holes compounded relative to the flow (β = 45◦ ) and arranged in a staggered configuration. Arrays of up to 30 rows are tested so that the superposition effect of the coolant film can be studied. In addition, shortened arrays of up to 20 rows of coolant holes are also tested so that the decay of the coolant film following injection can be studied. Levels of laterally averaged effectiveness reach values as high as ¯η = 0.5, and are not yet at the asymptotic limit even after 20 − 30 rows of injection for all cases studied. Levels of heat transfer augmentation asymptotically approach values of h/h0 ≈ 1.35 rather quickly, iii only after 10 rows. It is conjectured that the heat transfer augmentation levels off very quickly due to the boundary layer reaching an equilibrium in which the perturbation from additional film rows has reached a balance with the damping effect resulting from viscosity. The levels of laterally averaged adiabatic film cooling effectiveness far exceeding ¯η = 0.5 are much higher than expected. The heat transfer augmentation levels off quickly as opposed to the film effectiveness which continues to rise (although asymptotically) at large row numbers. This ensures that an increased row count represents coolant well spent. The numerical predictions are carried out in order to test the ability of the two most common turbulence models to properly predict full coverage film cooling. The two models chosen, Realizable k − ε (RKE) and Shear Stress T ransport k − ω (SSTKW), are both two-equation models coupled with Reynolds Averaged governing equations which make several gross physical assumptions and require several empirical values. Hence, the models are not expected to provide perfect results. However, very good average values are seen to be obtained through these simple models. Using RKE in order to model full-coverage film cooling will yield results with 30% less error than selecting SSTKW.
36

Effects of Realistic First-Stage Turbine Endwall Features

Cardwell, Nicholas Don 03 January 2006 (has links)
The modern gas turbine engine requires innovative cooling techniques to protect its internal components from the harsh operating environment typically seen downstream of the combustor. Much research has been performed on the design of these cooling techniques thus allowing for combustion temperatures higher than the melting point of the parts within the turbine. As turbine inlet temperatures and efficiencies continue to increase, it becomes vitally important to correctly and realistically model all of the turbine's external cooling features so as to provide the most accurate representation of the associated heat transfer to the metal surfaces. This study examines the effect of several realistic endwall features for a turbine vane endwall. The first study addresses the effects of a mid-passage gap, endwall misalignment, and roughness on endwall film-cooling. The second study focuses on the effect of varying the combustor-to-turbine gap width. Both studies were performed in a large-scale low speed wind tunnel with the same vane geometry. Geometric and flow parameters were varied and the variation in endwall cooling effectiveness was evaluated. Results from these studies show that realistic features, such as surface roughness, can reduce the effectiveness of endwall cooling designs while other realistic features, such as varying the combustor-to-turbine gap width, can significantly improve endwall cooling effectiveness. It was found that, for a given coolant mass flowrate, a narrow combustor-turbine gap width greatly increased the coverage area of the leaked coolant, even increasing adiabatic effectiveness upstream of the vane stagnation point. The turbine designer can also more efficiently utilize leaked coolant from the combustor-to-turbine gap by controlling endwall misalignment, thereby reducing the overall amount of film-cooling needed for the first stage. / Master of Science
37

Three-Dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading-Edge Model

Stenger, Douglas 20 April 2009 (has links)
No description available.
38

Infrared Thermography Technique for Measuring Heat Transfer to a Film Cooled Object

Chen, Liang 21 September 2016 (has links)
No description available.
39

Transient Aerothermodynamics of Flow Initialization for a Flat Plate Film Cooling Experiment in a Medium Duration Blowdown Wind Tunnel Facility

Boehler, Michael David 01 November 2010 (has links)
No description available.
40

A Detailed Study of Fan-Shaped Film-Cooling for a Nozzle Guide Vane for an Industrial Gas Turbine

Colban, William F. IV 04 December 2005 (has links)
The goal of a gas turbine engine designer is to reduce the amount of coolant used to cool the critical turbine surfaces, while at the same time extracting more benefit from the coolant flow that is used. Fan-shaped holes offer this opportunity, reducing the normal jet momentum and spreading the coolant in the lateral direction providing better surface coverage. The main drawback of fan-shaped cooling holes is the added manufacturing cost from the need for electrical discharge machining instead of the laser drilling used for cylindrical holes. This research focused on examining the performance of fan-shaped holes on two critical turbine surfaces; the vane and endwall. This research was the first to offer a complete characterization of film-cooling on a turbine vane surface, both in single and multiple row configurations. Infrared thermography was used to measure adiabatic wall temperatures, and a unique rigorous image transformation routine was developed to unwrap the surface images. Film-cooling computations were also done comparing the performance of two popular turbulence models, the RNG-kε and the v2-f model, in predicting film-cooling effectiveness. Results showed that the RNG-kε offered the closest prediction in terms of averaged effectiveness along the vane surface. The v2-f model more accurately predicted the separated flow at the leading edge and on the suction side, but did not predict the lateral jet spreading well, which led to an over-prediction in film-cooling effectiveness. The intent for the endwall surface was to directly compare the cooling and aerodynamic performance of cylindrical holes to fan-shaped holes. This was the first direct comparison of the two geometries on the endwall. The effect of upstream injection and elevated inlet freestream turbulence was also investigated for both hole geometries. Results indicated that fan-shaped film-cooling holes provided an increase in film-cooling effectiveness of 75% on average above cylindrical film-cooling holes, while at the same time producing less total pressure losses through the passage. The effect of upstream injection was to saturate the near wall flow with coolant, increasing effectiveness levels in the downstream passage, while high freestream turbulence generally lowered effectiveness levels on the endwall. / Ph. D.

Page generated in 0.0853 seconds