Spelling suggestions: "subject:"filtragem adaptativa"" "subject:"filtragem adaptativas""
11 |
Algoritmo adaptativo tipo-LMS com soma do erro / LMS-like algorithm with adaptive sum of the errorNahuz, Charles Silva 11 March 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-23T20:59:51Z
No. of bitstreams: 1
CharlesSilvaNahuz.pdf: 2149704 bytes, checksum: 650e374d99de26e3390d88bf0e7ac78a (MD5) / Made available in DSpace on 2017-06-23T20:59:51Z (GMT). No. of bitstreams: 1
CharlesSilvaNahuz.pdf: 2149704 bytes, checksum: 650e374d99de26e3390d88bf0e7ac78a (MD5)
Previous issue date: 2016-03-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this paper, implemented a new lter similar to the LMS, but, with a coast function based in the sum of the error. As a result, we obtain a very simple function, producing a rapid convergence and a small mismatch when compared with the LMS algorithm and other algorithms. The adaptive lter is based on non-linear functions such as estimation of the gradient of a surface performance. We use the gradient algorithm to update the weights. this update is based on high-order statistics to obtain information about the signs involved in the process, in order to improve the performace of the adaptive lter. Derive the equations based on Taylor series of non-linear functions, to achieve the criteria that ensures their convergence. We also do a weight vector covariance study in steady state and determine the equations that calculate the time constants in an adaptive process. Here the algorithm proposed, which uses a cost function and were made simulacoes Monte Carlo with real signals to validate the theory presented. In this role the α coefficients have been optimized to provide increased stability and better performance in its convergence speed. / Neste trabalho, implementamos um novo filtro semelhante ao LMS, porém, com uma função de custo baseada na soma do erro. Como resultado, obtemos uma função bastante simples, produzindo uma rápida convergência e um pequeno desajuste quando comparado com o algoritmo LMS e com outros algoritmos. O filtro adaptativo é baseado em funções não lineares como estimativa do gradiente de uma superfície de desempenho. Utilizamos o gradiente do algoritmo para atualização dos pesos. Essa atualização baseia-se nas estatísticas de alta ordem para obtenção de informações sobre os sinais envolvidos no processo, com o objetivo de melhorar a performance do filtro adaptativo. As equações foram derivadas e baseadas em séries de Taylor das funções não lineares, para obtenção dos critérios que garante a sua convergência. Também fazemos um estudo da covariância do vetor peso em regime estacionário e determinamos as equações que calculam as constantes de tempo em um processo adaptativo. Apresentamos o algoritmo proposto, que utiliza uma função de custo onde foram feitas simulações de Monte Carlo com sinais reais para validar a teoria apresentada. Nessa função os coe cientes αk foram otimizados para dar maior estabilidade e melhor desempenho na sua velocidade de convergência.
|
12 |
UM ALGORITMO TIPO RLS BASEADO EM SUPERFÍCIES NÃO QUADRÁTICAS / A ALGORITHM TYPE RLS BASED IN NON QUADRATIC SURFACESSilva, Cristiane Cristina Sousa da 19 July 2013 (has links)
Made available in DSpace on 2016-08-17T16:54:33Z (GMT). No. of bitstreams: 1
Tese Cristiane Cristina.pdf: 4404224 bytes, checksum: a68e5757bedc2d3d341a5937f100fe1f (MD5)
Previous issue date: 2013-07-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In adaptive filtering many adaptive filter are based on the mean square error method (MSE). These filters were developed to improve convergence spedd with a lower misadjustment. The least mean square (LMS) and the recursive least square (RLS) algorithms have been the hallmark of adaptive filtering. In this work we develop adaptive algorithms based on the even powers of the error inspired in the recursive lest square (RLS) algorithm. Namely recursive nom quadratic (RNQ) algorithm. The ideas is based on Widrow s least mean square fourth (LMF) algorithm. Fisrt we derive equations based on a singal even power of the error in order to obtain criterions that guarantee convergence. We also determine equations that measure the misadjustment and the time constant of the adaptive process of the RNQ algorithm. We work also, toward making the algorithm less sensitive to the size of the error in na alternative direction, by proposing a cost function which is a sum of the even powers of the error. This second approach bring the error explicitly to the RLS algorithm formulation by proposing a new cost function that preserves the measnsquare-error (MSE) solution, but allows for the exploitation of higher order moments of the error to speedup the converge of the algorithm. The main goal this work is to create form first principles (new cost functions ) a mechanism to include instantaneous error information in the RLS algorithm, make it track better, and allow for the design of the forgetting factor. As we will see the key aspecto of our approach is to include the error in the Kalman gain that effectively controls the speed of adaptation of the RLS algorithm. / Em filtragem adaptativa, vários filtros são baseados no método do erro quadrático médio (do inglês, MSE- mean squared error ) e muitos desses foram desenvolvidos para obter uma convergência rápida com um menos desajuste. Os algoritmos mínimos quadrático médio (do inglês, LMS- least mean square ) e mínimos quadrados recursivos (do inglês, RLS- recursive least square ) foram um marco em filtragem adaptativa. Nesse trabalho apresentamos o desenvolvimento de uma família de algoritmos adaptativos baseados nas potências pares do erro, inspirado na dedução do algoritmo RLS padrão. Chamaremos esses novos algoritmos de recursivo não-quadrático (RNQ). A ideia básica é baseada na função de custo apresentada por Widrow no algoritmo mínimo quarto médio ( do inglês, LMF least mean square fourth). Inicialmente derivamos equações baseados em uma potência par do erro para obter critérios que garantam a convergência. Determinamos também, equações que definem o desajuste e o tempo de aprendizagem do processo de adaptação do algoritmo RNQ baseado em potência para arbitrária. Trabalhamos também, no sentido de tornar o algoritmo menos sensível ao tamanho do erro numa direção alternativa, propondo uma função de custo baseado na soma das potências pares do erro. Essa segunda abordagem torna explícito o papel do erro na formulação do RLS ao propor uma nova função de custo que preserve a solução MSE, mas permite a utilização dos momentos de alta ordem do erro para aumentar a velocidade de convergência do algoritmo. O principal objetivo do nosso trabalho é criar a partir dos primeiros princípios (novas funções de custo) um mecanismo para incluir informações de erro instantâneo no algoritmo RLS e torná-lo um seguidor melhor. Assim, o aspecto-chave dessa nova abordagem é incluir o erro no ganho de Kalman que controla efetivamente a velocidade de adaptação do algoritmo de RLS.
|
13 |
Proposta do Kernel Sigmoide (KSIG) e sua análise de convergência para a solução de problemas de filtragem adaptativa não linearSilva, Éden Pereira da 27 January 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Adaptive filtering is applied as solution for many problems in engineer. There are many
techniques to improve adaptive filtering as kernel methods and, in addiction, it is used a pretuned
dictionary. In this context, here is presented the KSIG algorithm, the kernel version of
Sigmoide, where is used the kernel, to decrease the error, and the non-linear and even cost
function to increase the convergence speed. Here it is described also, the KSIG with a pretuned
dictionary, to reduce the size of the data set used to calculate the filter output, which
is a kernel method consequence . The KSIG and KSIG with pre-tuned dictionary theoretical
efficiency is one result of their convergence proof, which evidence that the algorithms
converge in average. The learning curves, which are results of some experiments, show that
when KSIG and KLMS algorithms are compared, the first converges faster, in less iterations,
than the second, in the version with and without pre-tuned dictionary of both algorithms. / A filtragem adaptativa é aplicada na solução de diversos problemas da engenharia. Há
muitas alternativas para melhorá-la, uma delas é o uso de kernel e, em adição, o uso de um
dicionário pré-definido de dados. Neste contexto, este trabalho apresenta o KSIG, a versão
em kernel do algoritmo Sigmoide, um algoritmo que otimiza o erro do filtro pelo emprego
de uma função de custo par e não linear. Ademais, é apresentada a versão do KSIG com dicionário
de dados pré-definido, visando redução do grande número de dados utilizados para
obtenção da saída decorrente do uso da técnica com kernel. A eficiência teórica do KSIG e
de sua versão com dicionário pré-definido é um resultado presente nas provas de convergência
construídas para ambos os algoritmos, as quais demonstraram que estes convergem em
média. Já as curvas de aprendizagem obtidas nas simulações computacionais dos experimentos
realizados demonstraram que o KSIG quando comparado ao KLMS, em diferentes
problemas de filtragem adaptativa, apresenta convergência mais rápida, em menos iterações,
tanto nas versões sem tanto com dicionário pré-definido de ambos os algoritmos.
|
14 |
[en] STRUCTURES AND ADAPTIVE ALGORITHMS FOR BLIND DETECTION OF DS-CDMA SIGNALS / [pt] ESTRUTURAS E ALGORITMOS ADAPTATIVOS PARA DETECÇÃO ÀS CEGAS DE SINAIS DS-CDMATIAGO TRAVASSOS VIEIRA VINHOZA 24 June 2008 (has links)
[pt] Esta tese apresenta novas estruturas e algoritmos
adaptativos para detecção às cegas de sinais DS-CDMA. São
investigados receptores cegos com restrições lineares
baseados nas funções custo de mínima variância (CMV) e
módulo constante (CCM). Algoritmos adaptativos do tipo
Affine-Projection para estimação dos parâmetros do receptor
são desenvolvidos e seu desempenho em estado estacionário é
analisado. Também são apresentados algoritmos adaptativos
para estimação às cegas do canal de comunicações. Em
seguida, novas estruturas de canceladores de interferência
são propostas. Primeiramente um cancelador de interferência
paralelo (PIC) linear baseado na função custo CCM é
proposto. Em seguida é desenvolvido um novo esquema
não-supervisionado de cancelamento sucessivo de
interferência (SIC), baseado no conceito de arbitragem
paralela. Por fim, é apresentado um esquema híbrido (HIC)
que combina a estrutura SIC com uma estrutura multi-
estágio, resultando em melhores estimativas para detecção e
desempenho uniforme para os usuários do sistema. / [en] This thesis presents new structures and adaptive algorithms
for blind detection of DS-CDMA signals. Linearly
constrained minimum variance (CMV) and constant modulus
(CCM) receivers are investigated. Blind adaptive Affine-
Projection like algorithms for receiver parameter estimation
are derived and its steady-state performance is analyzed.
Blind adaptive channel estimation algorithms are also
presented. This work also proposes new interference
cancellation structures. Firstly, a blind linear parallel
interference canceller (PIC) based on the CCM cost function
is proposed. Secondly, a new non-supervised serial
interference canceller (SIC) based on the parallel
arbitration concept is developed. Finally, an hybrid
interference cancellation scheme (HIC) which combines SIC
and multiple PIC stages is presented.
|
15 |
Sistemas de sensoriamento espectral cooperativos. / Cooperative spectrum sensing systems.Paula, Amanda Souza de 28 April 2014 (has links)
Esta tese de doutorado trata de algoritmos de detecção cooperativa aplicados ao problema de sensoriamento espectral em sistemas de rádios cognitivos. O problema de detecção cooperativa é abordado sob dois paradigmas distintos: detecção centralizada e distribuída. No primeiro caso, considera-se que o sistema conta com um centro de fusão responsável pela tomada de decisão no processo de detecção. Já no segundo caso, considera-se que os rádios cognitivos da rede trocam informações entre si e as decisões são tomadas localmente. No que concerne ao sensoriamento espectral centralizado, são estudados os casos em que os rádios cognitivos enviam apenas um bit de decisão para o centro de fusão (decisão do tipo hard) e também o caso em que o detector envia a própria estatística de teste ao centro de fusão (decisão do tipo soft). No âmbito de sensoriamento espectral cooperativo com detecção distribuída, são tratados três cenários diferentes. No primeiro, considera-se o caso em que os rádios cognitivos têm conhecimento a priori do sinal enviado pelo usuário primário do sistema e do canal entre eles e o usuário primário. No segundo caso, há conhecimento apenas do sinal enviado pelo usuário primário. Já no terceiro, os rádios cognitivos não dispõem de qualquer informação a priori do sinal enviado pelo usuário primário. Além do problema de detecção distribuída, a tese também apresenta um capítulo dedicado ao problema de estimação, diretamente associado ao de detecção. Esse último problema é abordado utilizando algoritmos derivados da teoria clássica de filtragem adaptativa. / This doctorate thesis deals with cooperative detection algorithms applied to the spectral sensing problem. The cooperative detection problem is approached under two different paradigms: centralized and distributed detection. In the first case, is considered that a fusion center responsible for detection decision is presented in the system. On the other hand, in the second case, is considered that the cognitive radios in the network exchange information among them. Concerning the centralized spectrum sensing system, the case in which the cognitive radios send only one decision bit (hard decision) to the fusion center and the case in which the detector send the statistic test (soft decision) are considered. Regarding the spectrum sensing system with distributed detection, the work analysis three different scenarios. In the first one, where the cognitive radios explore an a priori knowledge of the primary user signal and the channel between the primary user and the cognitive radio. In the second one, the cognitive radios use an a priori knowledge of only the primary user signal. And, in the las scenario, there is no a priori knowledge about the primary user signal. Besides the distributed detection problem, the thesis also presents a chapter dedicated to the estimation problem, which is directed related to the detection problem. This last issue is approached using adaptive algorithms derived from the classic adaptive filtering theory.
|
16 |
Combinations of adaptive filters. / Combinações de filtros adaptativos.Chamon, Luiz Fernando de Oliveira 30 March 2015 (has links)
Adaptive filtering has grown to become a fundamental topic in signal processing, increasingly attracting attention from the community. Important factors in this popularization were their low computational complexity and model-free nature, adapting even to nonstationary characteristics of the systems and/or signals under study. Nevertheless, many adaptive algorithms introduce trade-offs, for instance, between convergence rate, nonstationary signals tracking, and steady-state error, which can hinder their use in practical applications. Furthermore, some adaptive filters can become unstable when word length is reduced and/or the input data are highly correlated. Recently, combination of adaptive filters was put forward as a solution for such issues. This approach consists in combining a pool of filters by means of a supervisor that attempts to make the overall system at least as good (usually in the mean-square sense) as the best filter in the set. Examples of these structures have been shown to successfully solve this problem, although well-known limitations remain to be addressed. Moreover, due to the relative novelty of this topic, developments in combination of adaptive filters are difficult to accommodate into a common theoretical framework. This work studies combination of adaptive filters and addresses the aforementioned issue by (i) classifying the existing combinations and proposing a taxonomy that exposes the similarities and differences in their forms; (ii) proposing new combinations; (iii) devising a general framework for studying combinations of adaptive filters and using such framework in performance analyses. / Filtragem adaptativa vem ganhando destaque desde seu surgimento tornando-se um tópico de estudo fundamental em processamento de sinais. A versatilidade de dispensarem total conhecimento das propriedades estatísticas dos sinais, aliada à simplicidade computacional de seus métodos, foram importantes fatores em sua consagração. Apesar disto, muitos filtros adaptativos apresentam compromissos envolvendo, por exemplo, velocidade de convergência, rastreamento de sinais não-estacionários e erro em regime, que podem dificultar sua aplicação na prática. Ademais, alguns algoritmos adaptativos são instáveis quando suas entradas são altamente correlacionados e/ou a precisão dos cálculos é reduzida. Uma solução recente para estes problemas é o uso de combinações de filtros adaptativos. Esta abordagem baseia-se em combinar um conjunto de filtros por meio de um supervisor que procura fazer com que o sistema global seja pelo menos tão bom (em geral no sentido quadrático médio) quanto o melhor filtro do conjunto. Exemplos destas estruturas já mostraram a eficácia deste método, apesar de ainda existirem reconhecida limitações. Além disso, em se tratando de um tópico relativamente recente, os desenvolvimentos na área de combinação de filtros adaptativos não possuem uma estrutura teórica unificada. Este trabalho propõe abordar estas questões (i) classificando as combinações existentes e criando uma taxonomia que explicite semelhanças e diferenças entre elas; (ii) introduzindo novas combinações; e (iii) desenvolvendo uma forma unificada de descrever combinações de filtros adaptativos e usando-a em análises de desempenho.
|
17 |
Geometric-algebra adaptive filters. / Filtros adaptativos baseados em álgebra geométrica.Lopes, Wilder Bezerra 05 July 2016 (has links)
This document introduces a new class of adaptive filters, namely Geometric- Algebra Adaptive Filters (GAAFs). Those are generated by formulating the underlying minimization problem (a least-squares cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well-suited for the description of geometric transformations. Also, differently from the usual linear algebra approach, Geometric Calculus (the extension of Geometric Algebra to differential calculus) allows to apply the same derivation techniques regardless of the type (subalgebra) of the data, i.e., real, complex-numbers, quaternions etc. Exploiting those characteristics, among others, a general leastsquares cost function is posed, from which two types of GAAFs are designed. The first one, called standard, provides a generalization of regular adaptive filters for any subalgebra of GA. From the obtained update rule, it is shown how to recover the following least-mean squares (LMS) adaptive filter variants: real-entries LMS, complex LMS, and quaternions LMS. Mean-square analysis and simulations in a system identification scenario are provided, showing almost perfect agreement for different levels of measurement noise. The second type, called pose estimation, is designed to estimate rigid transformations { rotation and translation - in n-dimensional spaces. The GA-LMS performance is assessed in a 3-dimensional registration problem, in which it is able to estimate the rigid transformation that aligns two point clouds that share common parts. / Este documento introduz uma nova classe de filtros adaptativos, entitulados Geometric-Algebra Adaptive Filters (GAAFs). Eles s~ao projetados via formulação do problema de minimização (uma função custo de mínimos quadrados) do ponto de vista de álgebra geométrica (GA), uma abrangente linguagem matemática apropriada para a descrição de transformações geométricas. Adicionalmente, diferente do que ocorre na formulação com álgebra linear, cálculo geométrico (a extensão de álgebra geométrica que possibilita o uso de cálculo diferencial) permite aplicar as mesmas técnicas de derivação independentemente do tipo de dados (subálgebra), isto é, números reais, números complexos, quaternions etc. Usando essas e outras características, uma função custo geral de mínimos quadrados é proposta, da qual dois tipos de GAAFs são gerados. O primeiro, chamado standard, generaliza filtros adaptativos da literatura concebidos sob a perspectiva de subálgebras de GA. As seguintes variantes do filtro least-mean squares (LMS) s~ao obtidas como casos particulares: LMS real, LMS complexo e LMS quaternions. Uma análise mean-square é desenvolvida e corroborada por simulações para diferentes níveis de ruído de medição em um cenário de identificação de sistemas. O segundo tipo, chamado pose estimation, é projetado para estimar transformações rígidas - rotação e translação { em espaços n-dimensionais. A performance do filtro GA-LMS é avaliada em uma aplicação de alinhamento tridimensional na qual ele estima a tranformação rígida que alinha duas nuvens de pontos com partes em comum.
|
18 |
Sistemas de sensoriamento espectral cooperativos. / Cooperative spectrum sensing systems.Amanda Souza de Paula 28 April 2014 (has links)
Esta tese de doutorado trata de algoritmos de detecção cooperativa aplicados ao problema de sensoriamento espectral em sistemas de rádios cognitivos. O problema de detecção cooperativa é abordado sob dois paradigmas distintos: detecção centralizada e distribuída. No primeiro caso, considera-se que o sistema conta com um centro de fusão responsável pela tomada de decisão no processo de detecção. Já no segundo caso, considera-se que os rádios cognitivos da rede trocam informações entre si e as decisões são tomadas localmente. No que concerne ao sensoriamento espectral centralizado, são estudados os casos em que os rádios cognitivos enviam apenas um bit de decisão para o centro de fusão (decisão do tipo hard) e também o caso em que o detector envia a própria estatística de teste ao centro de fusão (decisão do tipo soft). No âmbito de sensoriamento espectral cooperativo com detecção distribuída, são tratados três cenários diferentes. No primeiro, considera-se o caso em que os rádios cognitivos têm conhecimento a priori do sinal enviado pelo usuário primário do sistema e do canal entre eles e o usuário primário. No segundo caso, há conhecimento apenas do sinal enviado pelo usuário primário. Já no terceiro, os rádios cognitivos não dispõem de qualquer informação a priori do sinal enviado pelo usuário primário. Além do problema de detecção distribuída, a tese também apresenta um capítulo dedicado ao problema de estimação, diretamente associado ao de detecção. Esse último problema é abordado utilizando algoritmos derivados da teoria clássica de filtragem adaptativa. / This doctorate thesis deals with cooperative detection algorithms applied to the spectral sensing problem. The cooperative detection problem is approached under two different paradigms: centralized and distributed detection. In the first case, is considered that a fusion center responsible for detection decision is presented in the system. On the other hand, in the second case, is considered that the cognitive radios in the network exchange information among them. Concerning the centralized spectrum sensing system, the case in which the cognitive radios send only one decision bit (hard decision) to the fusion center and the case in which the detector send the statistic test (soft decision) are considered. Regarding the spectrum sensing system with distributed detection, the work analysis three different scenarios. In the first one, where the cognitive radios explore an a priori knowledge of the primary user signal and the channel between the primary user and the cognitive radio. In the second one, the cognitive radios use an a priori knowledge of only the primary user signal. And, in the las scenario, there is no a priori knowledge about the primary user signal. Besides the distributed detection problem, the thesis also presents a chapter dedicated to the estimation problem, which is directed related to the detection problem. This last issue is approached using adaptive algorithms derived from the classic adaptive filtering theory.
|
19 |
ProposiÃÃo e avaliaÃÃo de algoritmos de filtragem adaptativa baseados na rede de kohonen / Proposition and evaluation of the adaptive filtering algorithms basad on the kohonenLuis Gustavo Mota Souza 02 June 2007 (has links)
nÃo hà / A Rede Auto-OrganizÃvel de Kohonen (Self-Organizing Map - SOM), por empregar um algoritmo de aprendizado nÃo supervisionado, vem sendo tradicionalmente aplicada na Ãrea de processamento de sinais em tarefas de quantizaÃÃo vetorial, enquanto que redes MLP (Multi-layer Perceptron) e RBF (Radial Basis Function) dominam as aplicaÃÃes que exigem a aproximaÃÃo de mapeamentos entrada-saÃda. Este tipo de aplicaÃÃo à comumente encontrada em tarefas de filtragem adaptativa que podem ser formatadas segundo a Ãtica da modelagem direta e inversa de sistemas, tais como identificaÃÃo equalizaÃÃo de canais de comunicaÃÃo. Nesta dissertaÃÃo, a gama de aplicaÃÃes da rede SOM à estendida atravÃs da proposiÃÃo de filtros adaptativos neurais baseados nesta rede, mostrando que os mesmos sÃo alternativas viÃveis aos filtros nÃo-lineares baseados nas redes MLP e RBF. Isto torna-se possÃvel graÃas ao uso de uma tÃcnica recentemente proposta, Quantized Temporal Associative Memory - VQTAM), que basicamente usa a filosofia de chamada MemÃria Associativa Temporal por QuantizaÃÃo Vetorial (Vector )treinamento da rede SOM para realizar a quantizaÃÃo vetorial simultÃnea dos espaÃos de entrada e de saÃda relativos ao problema de filtragem analisado. A partir da tÃcnica VQTAM, sÃo propostos trÃs arquiteturas de filtros adaptativos baseadas na rede SOM, cujos desempenhos foram avaliados em tarefas de identificaÃÃo e equalizaÃÃo de canais nÃolineares. O canal usado nas simulaÃÃes foi modelado como um processo auto-regressivo de Gauss-Markov de primeira ordem, contaminado com ruÃdo branco gaussiano e dotado de nÃo-linearidade do tipo saturaÃÃo (sigmoidal). Os resultados obtidos mostram que filtros adaptativos baseados na rede SOM tÃm desempenho equivalente ou superior aos tradicionais filtros transversais lineares e aos filtros nÃo-lineares baseados na rede MLP.
|
20 |
Combinations of adaptive filters. / Combinações de filtros adaptativos.Luiz Fernando de Oliveira Chamon 30 March 2015 (has links)
Adaptive filtering has grown to become a fundamental topic in signal processing, increasingly attracting attention from the community. Important factors in this popularization were their low computational complexity and model-free nature, adapting even to nonstationary characteristics of the systems and/or signals under study. Nevertheless, many adaptive algorithms introduce trade-offs, for instance, between convergence rate, nonstationary signals tracking, and steady-state error, which can hinder their use in practical applications. Furthermore, some adaptive filters can become unstable when word length is reduced and/or the input data are highly correlated. Recently, combination of adaptive filters was put forward as a solution for such issues. This approach consists in combining a pool of filters by means of a supervisor that attempts to make the overall system at least as good (usually in the mean-square sense) as the best filter in the set. Examples of these structures have been shown to successfully solve this problem, although well-known limitations remain to be addressed. Moreover, due to the relative novelty of this topic, developments in combination of adaptive filters are difficult to accommodate into a common theoretical framework. This work studies combination of adaptive filters and addresses the aforementioned issue by (i) classifying the existing combinations and proposing a taxonomy that exposes the similarities and differences in their forms; (ii) proposing new combinations; (iii) devising a general framework for studying combinations of adaptive filters and using such framework in performance analyses. / Filtragem adaptativa vem ganhando destaque desde seu surgimento tornando-se um tópico de estudo fundamental em processamento de sinais. A versatilidade de dispensarem total conhecimento das propriedades estatísticas dos sinais, aliada à simplicidade computacional de seus métodos, foram importantes fatores em sua consagração. Apesar disto, muitos filtros adaptativos apresentam compromissos envolvendo, por exemplo, velocidade de convergência, rastreamento de sinais não-estacionários e erro em regime, que podem dificultar sua aplicação na prática. Ademais, alguns algoritmos adaptativos são instáveis quando suas entradas são altamente correlacionados e/ou a precisão dos cálculos é reduzida. Uma solução recente para estes problemas é o uso de combinações de filtros adaptativos. Esta abordagem baseia-se em combinar um conjunto de filtros por meio de um supervisor que procura fazer com que o sistema global seja pelo menos tão bom (em geral no sentido quadrático médio) quanto o melhor filtro do conjunto. Exemplos destas estruturas já mostraram a eficácia deste método, apesar de ainda existirem reconhecida limitações. Além disso, em se tratando de um tópico relativamente recente, os desenvolvimentos na área de combinação de filtros adaptativos não possuem uma estrutura teórica unificada. Este trabalho propõe abordar estas questões (i) classificando as combinações existentes e criando uma taxonomia que explicite semelhanças e diferenças entre elas; (ii) introduzindo novas combinações; e (iii) desenvolvendo uma forma unificada de descrever combinações de filtros adaptativos e usando-a em análises de desempenho.
|
Page generated in 0.0777 seconds