Spelling suggestions: "subject:"defiltration dde a.desainarasimhalu"" "subject:"defiltration dde narasimhan""
1 |
Some topics in the geometry of framed sheaves and their moduli spaces / Quelques points de la géométrie des faisceaux encadrés et leurs espaces de modulesSala, Francesco 06 October 2011 (has links)
La thèse est consacrée à l'étude des faisceaux encadrés sur des variétés non-singulières projectives et des propriétés géométriques de leurs espaces de modules. En particulier, on donne une généralisation au cas encadré des résultats connus pour les faisceaux (semi)stables sans torsion non-encadrés, comme l'existence de la filtration de Harder-Narasimhan (relative), théorèmes de restriction de Mehta-Ramanathan, compactification de Donaldson-Uhlenbeck, la définition de la classe d'Atiyah relative et la description de l'application de Kodaira-Spencer via la classe d'Atiyah relative, l'existence d'une structure symplectique holomorphe, dans certains cas, sur les espaces de modules de faisceaux encadrés. / The thesis is concerned with the study of framed sheaves on nonsingular projective varieties and the geometrical properties of their moduli spaces. In particular, it deals with a generalization to the framed case of known results for (semi)stable torsion free nonframed sheaves, such as the existence of the (relative) Harder-Narasimhan filtration, Mehta-Ramanathan restriction theorems, Uhlenbeck-Donaldson compactification, the definition of the relative Atiyah class and the description of the Kodaira-Spencer map in terms of the relative Atiyah class, the existence of a symplectic structure, in certain cases, on the moduli spaces of framed sheaves.
|
2 |
Stabilité et filtration de Harder-NarasimhanBruasse, Laurent 21 December 2001 (has links) (PDF)
Née sur les variétés algébriques, la notion de stabilité s'est ensuite généralisée aux variétés kähleriennes, puis, au variétés holomorphes compactes grâce à l'utilisation des métriques de Gauduchon. L'étude du comportement des fibrés (ou des faisceaux) non semi-stables n'a été faite de façon complète que dans le cas algébrique à travers la notion de filtration de Harder-Narasimhan (FHN). Nous poursuivons ici cette étude pour des variétés holomorphes compactes quelconques. Nous montrons qu'il est possible de définir le sous-faisceau de pente maximale d'un fibré vectoriel complexe. Ce sous-faisceau est obtenu comme limite au sens des sous-fibrés holomorphes faibles, notion déjà utilisée par Uhlenbeck et Yau pour la correspondance de Kobayashi-Hitchin, qui nous donne ici ``la bonne notion de convergence''. Nous démontrons l'existence d'une FHN dans ce cadre. Nous généralisons ensuite le résultat aux faisceaux cohérents sans-torsion. On est alors confronté à des problèmes de convergence liés à la non compacité de la base (lieu où le faisceau est localement libre). Nous montrons ensuite comment ces méthodes s'appliquent à une famille de fibrés (ou une famille plate de faisceaux sans-torsion) définie sur une déformation de variété holomorphe compacte pour obtenir des résultats d'existence de sous-faisceaux limites de type Bishop. On obtient par là-même une nouvelle démonstration de l'ouverture de la stabilité en déformation qui n'utilise pas la difficile correspondance de Kobayashi-Hitchin. Dans une deuxième partie, nous donnons des conditions équivalentes de simplicité et de stabilité pour les fibrés tangents des surfaces holomorphes compactes de la classe $VII$. Nous obtenons, en particulier, un exemple de déformation de surface à coquille sphérique globale qui illustre la non ouverture de la non semi-stabilité en déformation.
|
3 |
The reduction of G-ordinary crystalline representations with G-structure / La réduction des représentations cristallines G-ordinaires avec G-structurePeche Irissarry, Macarena 15 November 2016 (has links)
Le foncteur D_cris de Fontaine nous permet d'obtenir des isocristaux à partir des représentations cristallines. Pour un groupe reductif G, on s'intéresse à étudier la réduction des réseaux dans une représentation cristalline avec G-structure V, vers les cristaux avec G-structure contenus dans D_cris(V). En utilisant la théorie des modules de Kisin, on donne une description de cette réduction en termes du groupe G, dans le cas où la représentation est (G-)ordinaire. Pour cela, il faut d'abord généraliser la construction de la filtration de Harder-Narasimhan des groupes p-divisibles, donnée par Fargues, aux modules de Kisin. / Fontaine’s D_cris functor allows us to associate an isocrystal to any crystalline representation. For a reductive group G, we study the reduction of lattices inside a germ of crystalline representations with G-structure V, to lattices (which are crystals) with G-structure inside D_cris(V). Using Kisin modules theory, we give a description of this reduction in terms of G, in the case when the representation V is (G-)ordinary. In order to do that, first we need to generalize Fargues’ construction of the Harder-Narasimhan filtration for p-divisible groups to Kisin modules.
|
Page generated in 0.1005 seconds