Spelling suggestions: "subject:"finansiell data"" "subject:"finansiella data""
1 |
Implementering av affärssystem - Påverkan på ekonomistyrning inom SMFAndersson, Thomas, Tengnäs, Alexander January 2017 (has links)
No description available.
|
2 |
Pricing collateralized loan obligation tranches using machine learning : Machine learning applied to financial data / Prissättning av collateralized loan obligation tranches med hjälp av maskininlärning : Artificiella neurala nätverk applicerade på finansiell dataEnström, Marcus January 2022 (has links)
Machine learning and neural networks have recently become very popular in a large category of domains, partly thanks to their ability to solve complex problems by finding patterns in data, but also due to an increase in computing power and data availability. Successful applications of machine learning include for example image classification, natural language processing, and product recommendation. Despite the potential upside of machine learning applied to financial data there exists relatively few articles published while the ones that do exist exhibit that there exists a potential for the tools that it provides. This thesis utilizes neural networks to price collateralized loan obligations which is a type of bond that is backed by a large pool of corporate loans, rather than being issued by a single company or government like a regular bond. The large pool of corporate loans and structure of a collateralized loan obligation makes it a good candidate for this type of research as it involves regressing a large number of variables into a final single real-valued price of the bond where the relations are not necessarily linear. The thesis establishes a relatively simple model and builds upon this using a state-of-the-art ensemble method while also exploring a volatility scaled loss function. The findings of this thesis are that artificial neural networks can price collateralized loan obligations using only their structural and loan pool data with an accuracy close to that of a human. Ensemble methods outperform non-ensemble methods and boost performance by up to 28% when only considering mean squared error while scaling the loss function with the inverse of market volatility does not boost performance. The best performing model can price a collateralized loan obligation tranche rated AAA with an average absolute error of 0.88 and an equity tranche with an average mean absolute error of 4.67. / Under de senaste åren har maskininlärning samt artificiella neurala nätverk blivit väldigt populära i många olika domäner. Detta är delvis tack vare deras förmåga att lösa komplexa problem genom att hitta mönster i data, men även tack vare en ökning i beräkningskraft samt att tillgängligheten av data har blivit bättre. Några exempel på områden där maskininlärning har applicerats med framgång är klassificering av bilder, språkteknologi samt produktrekommendationer. Trots att maskininlärning skulle kunna erbjuda en stor potentiell uppsida vid lyckad tillämpning på finansiella data finns relativt lite studier publicerade kring ämnet. De studier som däremot är publicerade visar på stora möjligheter inom området. Den här studien använder artificiella neurala nätverk för att prissätta ”collateralized loan obligations” (CLOs), som tyvärr inte har någon bra svensk översättning. En CLO utfärdar obligationer vars underliggande värde härstammar från en portfölj av företagslån, och är därmed ett finansiellt instrument. Strukturen av en CLO och dess underliggande lånportfölj ger upphov till en stor mängd data, vilket gör instrumentet till en bra kandidat för maskininlärning. Studien etablerar ett relativt enkelt neuralt nätverk som sedan används för ett jämföra med en ensemblemetod samt en modifierad loss funktion som tar höjd för volatilitet. Slutsatserna av den här studien är att neurala nätverk lyckas prissätta instrumenten näst intill lika bra som vad en människa skulle kunna göra med befintliga metoder som bygger på Monte Carlo simulering. Däremot är studiens metod inte lika beroende av antaganden som gör den befintliga metoden väldigt känslig. Vidare så bidrar ensemblemetoden som används till att minska det genomsnittliga felet i kvadrat med upp till 28%. Att ta höjd för volatilitet vid inlärning bidar inte till att minska felet.
|
3 |
Outlier detection with ensembled LSTM auto-encoders on PCA transformed financial data / Avvikelse-detektering med ensemble LSTM auto-encoders på PCA-transformerad finansiell dataStark, Love January 2021 (has links)
Financial institutions today generate a large amount of data, data that can contain interesting information to investigate to further the economic growth of said institution. There exists an interest in analyzing these points of information, especially if they are anomalous from the normal day-to-day work. However, to find these outliers is not an easy task and not possible to do manually due to the massive amounts of data being generated daily. Previous work to solve this has explored the usage of machine learning to find outliers in these financial datasets. Previous studies have shown that the pre-processing of data usually stands for a big part in information loss. This work aims to study if there is a proper balance in how the pre-processing is carried out to retain the highest amount of information while simultaneously not letting the data remain too complex for the machine learning models. The dataset used consisted of Foreign exchange transactions supplied by the host company and was pre-processed through the use of Principal Component Analysis (PCA). The main purpose of this work is to test if an ensemble of Long Short-Term Memory Recurrent Neural Networks (LSTM), configured as autoencoders, can be used to detect outliers in the data and if the ensemble is more accurate than a single LSTM autoencoder. Previous studies have shown that Ensemble autoencoders can prove more accurate than a single autoencoder, especially when SkipCells have been implemented (a configuration that skips over LSTM cells to make the model perform with more variation). A datapoint will be considered an outlier if the LSTM model has trouble properly recreating it, i.e. a pattern that is hard to classify, making it available for further investigations done manually. The results show that the ensembled LSTM model proved to be more accurate than that of a single LSTM model in regards to reconstructing the dataset, and by our definition of an outlier, more accurate in outlier detection. The results from the pre-processing experiments reveal different methods of obtaining an optimal number of components for your data. One of those is by studying retained variance and accuracy of PCA transformation compared to model performance for a certain number of components. One of the conclusions from the work is that ensembled LSTM networks can prove very powerful, but that alternatives to pre-processing should be explored such as categorical embedding instead of PCA. / Finansinstitut genererar idag en stor mängd data, data som kan innehålla intressant information värd att undersöka för att främja den ekonomiska tillväxten för nämnda institution. Det finns ett intresse för att analysera dessa informationspunkter, särskilt om de är avvikande från det normala dagliga arbetet. Att upptäcka dessa avvikelser är dock inte en lätt uppgift och ej möjligt att göra manuellt på grund av de stora mängderna data som genereras dagligen. Tidigare arbete för att lösa detta har undersökt användningen av maskininlärning för att upptäcka avvikelser i finansiell data. Tidigare studier har visat på att förbehandlingen av datan vanligtvis står för en stor del i förlust av emphinformation från datan. Detta arbete syftar till att studera om det finns en korrekt balans i hur förbehandlingen utförs för att behålla den högsta mängden information samtidigt som datan inte förblir för komplex för maskininlärnings-modellerna. Det emphdataset som användes bestod av valutatransaktioner som tillhandahölls av värdföretaget och förbehandlades genom användning av Principal Component Analysis (PCA). Huvudsyftet med detta arbete är att undersöka om en ensemble av Long Short-Term Memory Recurrent Neural Networks (LSTM), konfigurerad som autoenkodare, kan användas för att upptäcka avvikelser i data och om ensemblen är mer precis i sina predikteringar än en ensam LSTM-autoenkodare. Tidigare studier har visat att en ensembel avautoenkodare kan visa sig vara mer precisa än en singel autokodare, särskilt när SkipCells har implementerats (en konfiguration som hoppar över vissa av LSTM-cellerna för att göra modellerna mer varierade). En datapunkt kommer att betraktas som en avvikelse om LSTM-modellen har problem med att återskapa den väl, dvs ett mönster som nätverket har svårt att återskapa, vilket gör datapunkten tillgänglig för vidare undersökningar. Resultaten visar att en ensemble av LSTM-modeller predikterade mer precist än en singel LSTM-modell när det gäller att återskapa datasetet, och då enligt vår definition av avvikelser, mer precis avvikelse detektering. Resultaten från förbehandlingen visar olika metoder för att uppnå ett optimalt antal komponenter för dina data genom att studera bibehållen varians och precision för PCA-transformation jämfört med modellprestanda. En av slutsatserna från arbetet är att en ensembel av LSTM-nätverk kan visa sig vara mycket kraftfulla, men att alternativ till förbehandling bör undersökas, såsom categorical embedding istället för PCA.
|
Page generated in 0.0528 seconds