• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • Tagged with
  • 15
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The relationship between flax (Linum usitatissimum) fibre and yarn characteristics

Faughey, Garry James January 2000 (has links)
No description available.
2

Evaluation of Metakaolins for Use as Supplementary Cementitious Materials

Justice, Joy Melissa 20 April 2005 (has links)
Two metakaolins were evaluated for use as supplementary cementitious materials in cement-based systems. The metakaolins varied in their surface area (11.1 v. 25.4 m2/g), but were quite similar in mineralogical composition. Performance of metakaolin mixtures was compared to control mixtures and to mixtures incorporating silica fume as partial replacement for cement at water-to-cementitious materials ratios of 0.40, 0.50, and 0.60. In this study, the early age properties of fresh concrete and the mechanical and durability properties of hardened concrete were examined. Early age evaluations aimed to determine the reactivity of metakaolin (heat of hydration) and its effect on mixture workability (slump, setting time, unit weight). In addition, three types of shrinkage were monitored in metakaolin-cement systems: chemical, autogenous, and free. Compressive, tensile, and flexural strength and elastic modulus were measured at various concrete ages. The influence of metakaolin addition on durability was assessed through accelerated testing for sulfate resistance, expansion due to alkali-silica reaction, and through rapid chloride permeability measurements. To further quantify the underlying mechanisms of metakaolin's action, the microstructure of pastes was examined. Calcium hydroxide (CH) content was determined using thermogravimetric analysis and verified using differential thermal analysis. Surface area and pore size distribution were evaluated via nitrogen adsorption. These analyses yielded information about the pozzolanic reactivity of metakaolin, associated CH consumption and pore structure refinement, and resulting improvements in mechanical performance and durability of metakaolin-concretes.
3

A Study On The Early-strength Improvement Of Slag Cements

Akgun, Erdinc 01 July 2009 (has links) (PDF)
Use of alternative raw materials, especially industrial by-products, is necessary for a sustainable cement industry. By replacing clinker with industrial by-products, consumption of natural resources and energy is decreased. Therefore, both economical and environmentally friendly cements are produced. Several industrial by-products such as fly ash, silica fume, and slag, one of the most widely used industrial by-products, can be used to produce standard blended cements. Besides its many advantages, slag cements are reported to have lower early compressive strengths. Therefore, the objective of this study is to investigate the early-strength improvement of slag cements. In the experimental study, in order not to change the cement type, the additives were incorporated within the minor additional constituent ranges, i.e. less than 5%. First, CEM III/A type control cement was prepared by blending clinker (K) and slag (S), which were separately ground in a laboratory type ball mill. Ground limestone (L) of varying fineness, silica fume (F), and sodium hydroxide (N) were prepared to be used as minor additional constituent. The ground clinker, slag, and gypsum, and the additives at various ratios were blended to obtain 15 CEM III/A type slag cements other than the control. Finally, the fresh and the hardened properties of the cements were determined. As a result of this experimental study, it was observed that addition of limestone generally increased the early compressive strength of slag cements. However, silica fume and sodium hydroxide either decreased or did not affect the early compressive strength of the slag cements.
4

Early Heat Evolution In Natural Pozzolan-incorporated Cement Hydration

Over, Derya 01 August 2012 (has links) (PDF)
Portland cement hydration is an exothermic process. The heat evolved during the hydration process is especially important in mass concrete, and hot and cold weather concreting. Heat of hydration is affected by several factors like chemical composition of cement, fineness of cement and ambient temperature. The major aim of this thesis is to investigate the effect of cement composition and fineness, amount and composition of the fine portion (&lt / 45 &micro / m) of natural pozzolan-incorporated cement on hydration heat. For this purpose, a portland cement and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (trass) were used. The heat of hydration was measured using isothermal calorimetry. The values of heat of hydration for mixtures with different finenesses containing different amounts of added pozzolan were determined. The results obtained were used to find a correlation between the fineness, composition of cement and heat of hydration. According to this study, pozzolan incorporation in small amounts accelerates hydration. A similar effect was obtained for higher pozzolan amounts. Finer cements react faster and result in higher amounts of early heat evolved compared to coarser cements. In addition, it was found that the sum of the heat of hydration values of fine and coarse portion of cements was less than the total heat of hydration of blended cements. Moreover, a satisfactory correlation could not be established between results of isothermal calorimetry, and adiabatic calorimetry, setting time, and strength.
5

Effect of Cement Chemistry and Properties on Activation Energy

Bien-Aime, Andre J. 01 January 2013 (has links)
The objective of this work is to examine the effect of cement chemistry and physical properties on activation energy. Research efforts indicated that time dependent concrete properties such as strength, heat evolution, and thermal cracking are predictable through the concept of activation energy. Equivalent age concept, which uses the activation energy is key to such predictions. Furthermore, research has shown that Portland cement concrete properties are affected by particles size distribution, Blaine fineness, mineralogy and chemical composition. In this study, four Portland cements were used to evaluate different methods of activation energy determination based on strength and heat of hydration of paste and mortar mixtures. Moreover, equivalency of activation energy determined through strength and heat of hydration is addressed. The findings indicate that activation energy determined through strength measurements cannot be used for heat of hydration prediction. Additionally, models were proposed that are capable of predicting the activation energy for heat of hydration and strength. The proposed models incorporated the effect of cement chemistry, mineralogy, and particle size distribution in predicting activation energy.
6

Improvement of Cotton Fiber Maturity and Assessment of Intra-Plant Fiber Variability

Kothari, Neha 2012 August 1900 (has links)
The temporal system of fruiting on the cotton plant lends itself to bolls at different fruiting sites developing under different environmental conditions and with varied source-sink relationships. To investigate this, intra-plant fiber quality was assessed in four upland cultivars at College Station, Texas for three years and at Lubbock, Texas for two years. It was concluded that fiber quality steadily declines from the bottom sympodial branches towards the upper branches. 'FiberMax 832' had the best fiber quality among all cultivars but it also had the highest degree of variability within the plants. 'Half and Half' and 'Acala 1517-99' appear to have the least amount of intra-plant variability of fiber quality. Bolls from the bottom region of the plant have higher trash content compared to the upper region. To test the impact of fiber quality variability on boll sampling techniques employed, ten sampling protocols were compared against each other for three years in College Station, Texas, for two upland cultivars. Results suggest that randomized boll samples containing 50 bolls worked well to estimate inherent fiber quality for most fiber traits while estimation of trash and lint percent was not predictable based on boll samples. One of the problems associated with intra-plant fiber variability was the presence of immature fibers. In order to determine the potential for improvement of fiber maturity and standard fineness, five upland cotton (Gossypium hirsutum L.) genotypes were subjected to a diallel analysis at College Station, Texas, in 2011. Four cultivars that tend to produce fine and mature fibers and one cultivar that tends to produce coarse fibers were intermated in all combinations, without reciprocals. Estimates of general (GCA) and specific combining ability (SCA) for fiber maturity ratio and standard fineness based on Griffing's diallel Model I, Method 4 were calculated for AFIS and fiber micronaire, length and strength measurements for High Volume Instrument (HVI). Four parents had significant GCA effects and Acala 1517-99 was found to be the best parent for improving standard fineness followed by FiberMax 832 and 'Tamcot HQ-95'. Tamcot HQ-95 was the best parent to improve fiber maturity ratio while 'Deltapine 90' was the best parent to reduce fiber maturity ratio. The specific cross between Acala 1517-99 and Tamcot HQ-95 had the best performance. Diallel analysis indicated that fiber maturity ratio was influenced by non-additive gene effects more than additive gene effects while fiber standard fineness was highly influenced by additive gene effects. Developing cultivars with optimal fiber standard fineness and maturity should be prioritized to address problems associated with neps and short fiber content and improve spinning performance of US cotton.
7

Stříbrné mincovnictví pozdní doby římské (od doby Arkádia a Honoria do konce 5. století našeho letopočtu) / Late Roman Silver Coinage (from Arcadius and Honorius to the end of the 5th century AD)

Gambacorta, Federico January 2014 (has links)
This PhD research has furnished the occasion to update the outdated works about Late Roman coinage focusing especially on a topic not so commonly examined like the Late Roman silver coinage. More precisely, it is analysed and discussed some of its more intriguing aspects. First of all how silver, as metal, was considered and perceived in Late Roman society and, therefore, why during fifth century AD silver bullion was used to produce fine silver objects rather than coins. Two different Late Roman customs concerning silver coinage are then reviewed: hoarding, with a list of most recent findings, and clipping. Finally a chapter is dedicated to the metrology and fineness of Late Roman silver coins together with an accurate analysis of the 7 different denominations. This extensive and deep discussion about Late Roman silver coinage's main problematics is completed by the most recent and updated catalogue of all the Late Roman silver denominations known so far. Such a review has given not only the possibility of updating or modifying some of the previous theories but also the opportunity to suggest some new ideas. --------------------------------------- Podrobně jsou zkoumány některé konkrétní zásadsní otázky, především jakým způsobem bylo v pozdně římské společnosti vnímáno stříbro jako kov a proč tedy...
8

Die verband tussen ertsgraad, fisiese elektrisiteitverbruik en bedryfskoste in die Suid-Afrikaanse goudmynbedryf, 1965-1982

10 September 2014 (has links)
M.Com. (Economics) / The objective of the thesis was to examine the relationship between the grade of ore, physical electricity consumption and working cost in the South African gold mining industry for the period 1965 - 1982. The South African economy is heavily dependent on the gold mining industry, which is a major earner of foreign exchange and a large consumer of labour and agricultural and industrial output. The industry is also important as a source of finance for both the private sector and the Treasury. Curtailment of activity within the industry by closing down the more marginal mines or by shortening the life of the industry' as a whole because of rising costs and/or a hesitant gold price, will harm the South African economy in a number of ways. The industry has no option but to regard the gold price as given. The remaining ore reserves tend to be of a lower grade and/or to be found at greater depth. Controlling the working costs would seem to be almost the only option open to the industry.
9

A Study of Moisture Induced Material Loss of Hot Mix Asphalt (HMA)

Arepalli, Uma Maheswar 04 December 2017 (has links)
"Susceptibility of Hot Mix Asphalt (HMA) mixes to moisture induced damage is one of the main reasons for premature failures of asphalt pavements. Hence, the evaluation of mixes for the moisture susceptibility is an essential part of the mix design. The existing methods are found to be in-sufficient to characterize mixes in terms of their moisture damage potential, and many studies have been conducted to establish an improved methodology that can better address the issue. Most of these methods involve the determination of changes in mix properties due to moisture conditioning in the laboratory or to verify the mix performance in the field or the laboratory. In the field moisture susceptible mixes are also found to lose material to extents that are dependent upon the properties of the mix and materials. So far, there has been no comprehensive study to investigate the loss of materials due to moisture induced damage. The objective of this study was to identify and evaluate a conditioning and a test method that can be used on a regular basis to detect moisture susceptible mixes and to understand the combined problem of moisture induced material loss and change in strength/stiffness of the mix. The Moisture Induced Stress Tester (MIST), Ultrasonic Pulse Velocity (UPV), Dynamic Modulus in Indirect tensile mode, and Indirect Tensile Strength (ITS) tests were utilized in the study. The effluent from the MIST was checked for the gradation of dislodged aggregates and the Dissolved Organic Carbon (DOC) content. A system dynamics (SD) approach was also adopted to investigate the problem and establish a model to reproduce field observations. The results showed that the use of MIST in combination with UPV or ITS is able to identify moisture susceptible mixes, in particular for mixes with the potential of aggregate breakdown. The mixes with a higher loss of asphalt binder during conditioning exhibit higher tensile strengths, and those with a loss of finer materials, which is indicative of aggregate breakdown, show a lower tensile strength. For the mixes used in this study, the rate of change in indirect tensile strength during moisture conditioning was found to be strongly correlated to the pre-conditioning modulus of the mix. A step-by-step framework to characterize the moisture susceptible mixes was presented."
10

Effect Of Trass, Granulated Blast Furnace Slag And Fly Ash On Delayed Ettringite Formation

Topbas, Selim 01 September 2010 (has links) (PDF)
Properly proportioned, placed and cured concrete can be durable under most conditions. However, deterioration of concrete does occur under certain environments. One of the problems that affect the durability of hardened concrete is delayed ettringite formation (DEF) which is an important problem encountered in precast concrete industry where high temperature curing is applied. Although there had been many researches on DEF, there are still many uncertainties about its chemistry and mechanism. In this study, the effects of partial cement replacement by different mineral admixtures (trass, blast furnace slag and fly ash), SO3/Al2O3 molar ratio and specific surface area of cement on DEF were investigated. For this purpose, 9 groups of control cements were prepared with 3 different specific surface areas and 3 different SO3/Al2O3 molar ratios. Different amounts of mineral admixtures were blended with the control cements. High temperature curing was applied to the cement pastes and the expansions of these pastes were measured periodically for 240 days. v The experimental results obtained were interpreted for a comparative analysis of the effects of the afore-mentioned parameters.

Page generated in 0.0495 seconds