• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1157
  • 272
  • 249
  • 168
  • 147
  • 112
  • 25
  • 17
  • 16
  • 14
  • 11
  • 10
  • 10
  • 10
  • 6
  • Tagged with
  • 2848
  • 313
  • 273
  • 259
  • 256
  • 229
  • 201
  • 177
  • 153
  • 139
  • 133
  • 126
  • 124
  • 123
  • 122
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Fire Resistance of Connections in Pre-Stressed Heavy Timber Structures

Gerard, Robert Buonomo January 2010 (has links)
Construction with composite materials has become increasingly popular in contemporary structural design for multi-storey residential, commercial, and industrial buildings. As a composite structure, pre-stressed heavy timber buildings offer sustainable, environmentally-friendly advantages over competing construction technologies utilising structural steel and concrete components. Research at the University of Canterbury is continually investigating the performance and behaviour of this composite heavy timber construction assembly. The following research report provides a fire resistance analysis for pre-stressed heavy timber structures that includes: • A comprehensive literature review detailing the fire resistance for pre-stressed heavy timber structural components and typical connections; and • A four-phase series of experiments with epoxy grouted steel threaded rods and proprietary mechanical fasteners to determine the fire resistance properties of steel to wood connections. Laboratory experimentation includes cold testing to determine connection performance at ambient temperature, oven testing to evaluate heating effects on steel to wood connections, cooled testing to determine the residual strength of connections in minor fires and, finally, furnace testing to generate fire resistance design and analysis equations to be utilised for steel to wood connections. Recommendations for the fire performance of connections in pre-stressed heavy timber structures are included in the report.
422

Numerical prediction of structural fire performance for precast prestressed concrete flooring systems.

Min, Jeong-Ki January 2012 (has links)
In predicting the likely behaviour of precast prestressed concrete flooring systems in fire using advanced finite element methods, an improved numerical model using the non-linear finite element program SAFIR has been developed in order to investigate the effects and the interaction of the surrounding structures and has been used extensively throughout this thesis. Note that fire induced spalling is not included in the analysis. In the numerical investigation of the new model, the reinforced concrete topping is modelled as part of the beam elements in order to predict the behaviour of single hollowcore concrete slabs, with various support conditions, under a Standard ISO fire. It is shown that the current approach using tendons that are anchored into the supporting beams leads to a major problem for precast prestressed flooring systems. In order to resolve this problem, a multi-spring connection model has been developed to include the old and new connection systems corresponding to the New Zealand Concrete Standard NZS 3101. The connection model with hollowcore slabs is validated against a published fire test. The investigation on restrained hollowcore floors is performed with various parameters and boundary support conditions. Numerical studies on various boundary support conditions show that the behaviour of hollowcore floors in fire is very sensitive to the existence of side beams. Further investigations on the effects of fire emergency beams, which reduce the transverse curvature of floors to improve fire resistance, are made on 4x1 multi-bay hollowcore floors with different arrangements of theses beams. The numerical studies show that fire emergency beams significantly increase the fire resistance. Code based equations which can calculate the shear resistance and splitting resistance are then introduced. The Eurocode equation can be modified with high temperature material properties to estimate the shear capacity of a hollowcore slab. The modified Eurocode equation which is fit to fire situations validated against the published literature with respect to shear tests in fire. The structural behaviour of single tee slabs having different axial restraint stiffness as well as the variation of axial thrust in fire is then studied. SAFIR analyses of single tee slabs show that fire performance can increase when a web support type is used that has high axial restraint stiffness. A series of test results on prestressed flat slabs conducted in United States are used to validate a simply supported numerical model. The application of multi-spring connection elements is also investigated in order to examine the feasibility of continuity.
423

Fire Safety System Effectiveness for a Risk-Informed Design Tool

Frank, Kevin Michael January 2013 (has links)
The purpose of this research is to identify how uncertainty in fire safety system effectiveness should be considered in a new risk-informed design fire tool, B-RISK. Specific objectives were to collect the available data on fire safety system effectiveness from the literature, investigate methods to improve fire safety system effectiveness data collection, develop the risk-informed design fire tool to propagate the uncertainties, and recommend methods to rank the sources of uncertainty for fire safety system effectiveness for appropriate model selection. The scope of the research is limited to the effects of systems on fire development and smoke spread and does not include the effects of the fire on systems (such as loss of structural integrity) or interactions with occupants. Sprinkler effectiveness data from recent New Zealand Fire Service data is included with a discussion of the uncertainty in this type of data and recommendations for improving data collection. The ability of the model to predict multiple sprinkler activations is developed in conjunction with a hydraulic submodel in B-RISK to include water supply pressure effects on sprinkler effectiveness. A new method of collecting reliability data on passive fire protection elements such as doors was developed. Data collected on the probability for doors in shared means of escape to be open and the time doors are open during occupant evacuation using this method is presented. Available data on smoke management system effectiveness is listed, along with a discussion of why there is more uncertainty associated with these systems compared with sprinkler systems. The capabilities of B-RISK for considering fire safety system effectiveness are demonstrated using Australasian case studies.
424

Analysis of the structural response of tall buildings under multifloor and travelling fires

Kotsovinos, Panagiotis January 2013 (has links)
The last decades have seen a surge in the construction of tall buildings all over the world. Due to their, often, innovative and complex layouts, tall buildings can pose unique challenges to architects and engineers. Previous tall building failures raised significant concerns on the applicability of prescriptive fire design for these structures. The use of structural fire engineering can enhance the safety of a tall building under fire by strengthening any vulnerable areas in the structure and at the same time reduce the costs of fire protection by removing it when unnecessary. Commercial finite element and specialist structural fire engineering software have their advantages and disadvantages. In this thesis, the object-oriented and open-source finite element software OpenSees is presented along with its development with structural fire capabilities by the author and other researchers at the University of Edinburgh. Specifically, new pattern, element, section and material classes have been introduced. All the developed code follows the object-oriented paradigm and is consistent with the ethos of the existing framework. Verification and validation studies of the developed code are also presented. Several procedures including that for dynamic analysis of structures in fire for the collapse assessment of structures are discussed. The development of OpenSees with structural fire capabilities allows the collaboration of engineers across geographical boundaries and disciplines using a community tool. In this work, the behaviour of tall buildings under different fire scenarios has been modelled using the developed OpenSees code. Firstly, the collapse mechanisms of generic tall buildings are investigated, namely the strong and weak floor mechanisms are demonstrated, and criteria are established on when each of these mechanisms occurs. The parametric study performed demonstrated that the weak floor collapse is less probable for generic composite buildings however this type of failure can become easier to appear as the number of floors in fire increase. The effect of vertically travelling fires on these mechanisms is also examined. The results of the study show that slower travelling rates delay or avoid the global failure of a tall building compared to quicker travelling rates allowing for the time required for steel members to regain their strength during cooling to ambient temperature. However, it was seen that higher tensile membrane forces were observed in the floors as the travelling rates increased which could result in possible connection failure. Most of the research and design codes, such as Eurocode, typically assume a uniform thermal environment across the floor area of a structure when defining the design fire. However, in reality fires are more likely to travel in large enclosures, hence there is a need to understand how tall buildings behave under more realistic fire conditions such as travelling fires. A methodology for defining the thermal environment of large enclosures using travelling fires has been recently developed at the University of Edinburgh. Taking into account OpenSees' programmable architecture and its recent inclusion with heat transfer capabilities by other researchers, there was a collaborative effort in order to understand the thermal and structural response of a generic composite tall building under horizontally travelling fires. The findings of the study showed that larger travelling fire sizes produce quicker heating to the steel beams while smaller fire sizes produce higher peak temperatures in the concrete slab. The structural analysis also demonstrated that travelling fires produced higher midspan deflections in comparison to Eurocode parametric fires and higher plastic deformations which is an indication of higher damage. Further work focused on looking at the behaviour of tall buildings under the combined scenario of horizontally and vertically travelling fires. The results of the study showed that the travelling fires produce lower maximum compressive and tensile membrane forces in the composite floor compared to the Eurocode parametric fires for the building examined and thus in a multi-floor scenario the columns are pulling-in less after large deflections develop in the floor. More specifically, the short-hot fire produced the most demanding response. This suggests that in long floors where uniform heating is really impossible, the time of failure predicted by parametric fires in a multi-floor scenario can be more onerous. The outcomes of this work can aid designers when considering the structural fire response of tall buildings in a performance based design context. It was demonstrated that multi-floor fires could be a threat for tall buildings, and thus this possibility should be considered in design. The use of more realistic fire definition for large enclosures, such as travelling fires, should also be considered. The travelling fire methodology can provide an enhanced level of confidence for the safety of a building since it can represent a range of similar fires to those that may occur in a real fire scenario.
425

FIREWISE Plant Materials for 3,000 ft. and Higher Elevations

Deneke, Fred, DeGomez, Tom, Schalau, Jeff, Jones, Chris 08 1900 (has links)
4 pp.
426

Soil Erosion Control after Wildfire

Deneke, Fred 07 1900 (has links)
6 pp.
427

Recovering from Wildfire: A Guide for Arizona's Forest Owners

Deneke, Fred 08 1900 (has links)
8 pp.
428

Mathematical modeling of multistep chemical combustion: The hydrogen-oxygen system.

Elele, Nwabuisi N. O. January 1988 (has links)
A model of premixed lean Hydrogen-Oxygen flame is studied by singular perturbation techniques based on high activation energy. The model is built from four reaction steps consisting of two chain branching steps, a chain propagating step, and a recombination step. The analysis, in this case, gives rise to a layer phenomenon different from what is currently seen in combustion literature. First, there is a basic layer similar to those obtained for the one step reaction model. Then embedded in the first layer is a thinner layer giving rise to an interesting system of nonlinear boundary value problems. This system of nonlinear problems does not meet standard existence criterium and also involves an unknown parameter. Hence existence results are called for. Existence is proved for both the boundary value problem and the unknown parameter, and numerical solutions are obtained in support of the existence results. A numerical estimate of the unknown parameter is obtained. A generalization of the model for different reaction parameter ranges is made. Two new thin layers emerge. The structure of one of the new thin layers turns out to be exactly the same as that just described, hence the existence results do carry over. The boundary value problem resulting from the second of the new thin layers turned out to be quite simple and a solution could be written down explicitly.
429

Stochastic Fire Modeling of a Montane Grassland-Forest Landscape in the Valles Caldera National Preserve, New Mexico, USA

Conver, Joshua January 2011 (has links)
Montane ecosystems of the western United States have experienced dramatic changes in their fire regimes over the last 150 years. Fire behavior modeling enables understanding of how ecosystem changes have altered past fire regimes. The Valles Caldera National Preserve in the Jemez Mountains, northern New Mexico, contains one of the largest montane grasslands in North America. This area is used for multiple uses ranging from logging to grazing and recreation. These important ecosystems have experienced increased fuel loads and stem densities resulting from a century of fire exclusion and tree encroachment, resulting in potentially anomalous fire behavior. We investigated whether fire pathways tend to spread along the grassland-forest ecotone or if fire would spread directly across grasslands under extreme fire weather conditions. We used the program FlamMap to model fire behavior under a variety of weather and fuel conditions. Fire spread pathways and burn perimeters were computed for the 50th, 90th, and 99th percentiles of historic weather conditions. The results are compiled into a probability surface that represents the most parsimonious pathways of fire spread in this landscape. We found that pathways were related to the origin of ignition; fires tended to spread around the ecotone, facilitating fire spread to adjacent grasslands. These results, complemented with fire history studies in dendrochronology and empirical observations of the Las Conchas Fire in 2011, further the understanding of the role and dynamics of fire in maintaining the montane-grassland conifer ecotone, and can guide efforts to restore a landscape affected by the effects of fire exclusion.
430

FIREWISE Plant Materials for 3,000 ft. and Higher Elevations

DeGomez, Tom, Schalau, Jeff, Jones, Chris, Campbell, Steve 12 1900 (has links)
Revised; Originally Published: 2002 / 5 pp.

Page generated in 0.0299 seconds