Spelling suggestions: "subject:"ischämischer tropsch"" "subject:"ischämischer kopsch""
171 |
Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester BiomasseMüller-Langer, Franziska 23 February 2015 (has links)
Etwa ein Drittel des Gesamtendenergieverbrauchs entfällt auf den Transportsektor, dessen Energieverbrauch zu rund 98 % über fossile Kraftstoffe (maßgeblich Mineralöl) abgedeckt wird [70], [71], [91]. Gleichzeitig ist der Transportsektor eine der Hauptursachen für den Ausstoß anthropogener Treibhausgasemissionen. Mobilität (insbesondere von Personen und Gütern) ist für die gesellschaftliche und wirtschaftliche Entwicklung unverzichtbar und nach wie vor ein überdurchschnittlich wachsender Bereich [103]. Weltweit wird sich die Anzahl der Kraftfahrzeuge von ca. 700 Mio. Personenwagen im Jahr 2000 auf etwa 1,3 Mrd. Personenwagen im Jahr 2030 nahezu verdoppeln; gleiches gilt für den damit einhergehenden Verbrauch an Endenergie [302]. Hingegen wird in Deutschland von einem um 9 % sinkenden Energieverbrauch gegenüber 2005 auf 2 EJ/a im Jahr 2030 ausgegangen; in den Mitgliedsstaaten der EU-27 hingegen wird ein Anstieg um 14 % gegenüber 2005 auf 17,7 EJ/a im Jahr 2030 erwartet [71], [72]. [... aus der Einleitung]
|
172 |
Cobalt supported on mesoporous silicas for the Fischer-Tropsch synthesisDonado Sainz de la Maza, Esther January 2012 (has links)
This thesis deals with the study of several catalysts for the Fischer-Tropsch synthesis in the Biomass-To-Liquid process. In this work two groups of catalysts were tested. On the one hand, two series of catalysts with cobalt loadings of 6 and 12 wt% over SiO2 and some of them containing 5wt% of TiO2 were tested. One the other hand, other two series of mesoporous short channel SBA-15, all of them with cobalt loadings of 12wt% and some with 5wt% of titania. The first series was supported on SBA-15 DeWitte and the second one on SBA-15 Martinez. On the one hand, the influence of water addition to the feed, titania content and cobalt loading to the catalyst and was studied, as well as the consequences of a GHSV. The FT reaction was carried out along 5 periods of 24 hours each, in which conditions such as feed and water content were modified, enabling the study of these parameters. It was found that water provokes an increase of the CO conversion and has a positive kinetic effect on the rate to hydrocarbons. However, this fact reaction is followed by a quick deactivation, enhanced by high water partial pressures. Most of that deactivation is irreversible since it is not completely recovered after water removal. On the other hand, differences between the supports were studied. Some SBA-15 supported catalysts show CO diffusion limitations at longer channel lengths than what applies for conventional 3D porous supports. Titania grafting increases the rate to hydrocarbons, showing positive results for FT catalysts development.
|
173 |
[pt] ESTUDO DE NANO PARTÍCULAS DE FERRO SUPORTADAS E NÃO SUPORTADAS PARA A REAÇÃO DE FISCHER TROPSCH / [en] STUDY OF SUPPORTED AND NOT SUPPORTED IRON NANO PARTICLES IN THE REACTION OF FISCHER TROPSCHOLIVER EUGENIO EVERETT ESPINO 20 July 2016 (has links)
[pt] Catalisadores de ferro suportados em sílica alumina e em sílica
mesoporosa, além de nano partículas de ferro não suportadas, foram
estudados. A preparação dos catalisadores suportados ocorreu pelo
método de impregnação do ponto úmido incipiente com soluções aquosas
de cloreto de ferro, para obter 2 por cento ou 5 por cento de metal, sendo um desses
preparado pelo método da ureia, onde uma quantidade apropriada de uma
solução aquosa de FeCl3·6H2O (99 por cento -Merck) foi misturada com ureia. As
amostras foram caracterizadas por medidas de fisissorção de N2, difração
de Raios-X (DRX), redução com temperatura programada (RTP) e
microscopia eletrônica de transmissão (TEM). A quantidade de metal foi
determinada usando espectroscopia de absorção atômica (EAA). Os
suportes de sílica alumina e de sílica mesoporosa foram caracterizados
ainda por análise termogravimétrica (ATG/DTG). As propriedades
texturais mostraram que após a introdução do metal nos suportes, a área
específica, o volume de poros e o diâmetro de poro decresceram conforme
o teor metálico foi aumentado. As análises de DRX com refinamento de
Rietveld detectaram a formação das fases de FeO, Fe3O4, Fe0, para todas
as amostras suportadas. Os perfis de redução (RTP) para as amostras de
ferro suportadas mostraram, principalmente, duas regiões de redução, a
primeira atribuída a redução de Fe2O3 para FeO e a segunda a redução
de FeO para Fe0. / [en] Iron catalysts supported on silica alumina and mesoporous material,
beside non supported iron nanoparticles, were studied. The preparation of
supported catalysts occurred by incipient wetness impregnation method
with aqueous solutions of iron chloride to give 2 percent or 5 percent of metal. One iron
catalyst supported on silica alumina was prepared by the method of urea,
in which an appropriate amount of an aqueous solution of FeCl3·6H2O
(99 percent - Merck) was mixed with urea for impregnation. The samples were
characterized by measurements of N2 physisorption, X-ray diffraction
(XRD), temperature programmed reduction with (TPR), transmission
electron microscopy (TEM). The amount of metal embedded in each
sample was determined using atomic absorption spectroscopy (AAS). The
silica alumina and mesoporous silica supports were also characterized by
thermogravimetric analysis (DTA/TGA). The textural properties showed that
after introduction of the metal into the supports, the specific area, pore
volume and pore diameter decreased as the metal content was increased.
XRD analysis with Rietveld refinement showed the formation of phases the
following phases FeO, Fe3O4, Fe0, for all supported samples. Reduction
profiles (TPR) for the supported iron samples showed mainly two reduction
regions, assigned for Fe2O3 to FeO and for FeO to Fe0, respectively.
|
174 |
Production of Hydrocarbons from Gasified Biomass Using Bifunctional CatalystsStreet, Jason Tyler 15 August 2014 (has links)
The following chapters deal with the chemistry, catalytic poisoning, newer catalyst technologies, and possible future solutions to increase the efficiency of creating high-value products by thermochemically converting gasified biomass (producer gas). Chapter 1 puts emphasis on multifunctional catalysts containing transition metals that are used for renewable fuel production. High-value products such as gasoline-range hydrocarbons, dimethyl ether (DME), aldehydes, isobutane, isobutene and other olefins can be produced with gasified biomass due to the gas containing syngas (H2 + CO). The chemistry and production of these chemicals is discussed in the review. Chapter 2 describes the reactor design of a bench scale system and results after using a Mo/HZSM- 5 catalyst for aromatic hydrocarbon creation. This chapter also discusses issues that came with trying to control the temperature without any reactor intercooling. Chapter 3 shows the feasibility of using a particular multifunctional catalyst with a lab scale system and also shows the importance of certain process variables including temperature, space velocity, gas ratios, and pressure. The subject of the importance of the cleanliness of the producer gas is also discussed so that maximum high-value product yield can be achieved with the greatest efficiency. Chapter 4 discusses the implementation of a bench scale and pilot scale reactor design (both with intercooling) and the results of scale-up when using the catalyst mentioned in Chapter 3. Chapter 5 involves the modelling of an industrialized system with Aspen Plus. The economics of industrial plants to produce hydrocarbons from coal or wood feedstocks at scales of 5, 50 and 5000 tons per day were modeled using CAPCOST.
|
175 |
Catalytic Conversion of Biomass to Bio-FuelsWijayapala, Hevagamage Rangana Thilan 13 December 2014 (has links)
The conversion of biomass to biouel has received considerable attention as a sustainable way to produce energy. As worldwide fossil fuels become depleted these efforts grow in importance. The overall strategy is to transform the parent biomass feedstock to increase C-C bonds while reducing oxygen in the final products. A catalytic approach is often used to achieve good yields of transportation grade liquid hydrocarbons from biomass. Development of novel catalyst systems to aid in the thermochemical conversion of biomass to biouel is the focus of this thesis. Gasification of biomass produces synthesis gas (CO and H2). Synthesis gas can be converted to liquid hydrocarbons using Fischer-Tropsch (FT) synthesis. Mo/ZSM-5 FT catalysts with a potassium (K) promoter are introduced to enhance liquid hydrocarbon production and CO conversion of synthesis gas. Liquid products and CO conversion were determined using GC-MS analysis with respect to changes in K loading from 0-2%. The highest liquid product selectivity (21.7%) was found with 1.0% K loading while largest CO conversion (63%) was found with 1.2% K loading. This catalyst work was extended by introducing Ni and Co into the Mo/ZSM-5 catalysts. A copper based water gas shift catalyst (WGS) was also used in concert with the FT catalyst to improve product selectivity. This WGS catalyst promotes the in-situ production of H2 while decreasing water content. The FT+WGS catalyst were used to convert both 1:1 CO: H2 syngas and bio-syngas at 280 °C and 350 °C. The liquid hydrocarbon selectivity was significantly changed and the CO conversion was remarkably increased compared to the reactions without the dual catalyst at both temperatures. In the fourth chapter, FT+WGS catalysts were studied for upgrading bio-oil model compounds. Guaiacol and furfural were used as the model compounds and upgrading reactions were done under H2, syngas and bio-syngas at 200, 250 and 300 °C. Significant conversion of both guaiacol (85%) and furfural (100%) occurred with syngas at 300 °C. Products upgraded from syngas had a higher combined heat of combustion than the products with pure H2. This suggests the incorporation of some C from CO with model compound upgrading reactions with syngas.
|
176 |
Synthesis, Characterization, and Catalytic Activity of Silica Supported Homo- and Heterodinuclear Metal ComplexesRanaweera, Ankadage Samantha 11 August 2012 (has links)
Stable dinuclear complexes bis(heptane-2,4,6-trionato)dicopper(II) [Cu2(daa)2], bis(1,5-diphenyl-1,3,5-pentanetrionato)dicopper(II) [Cu2(dba)2], bis(1,5-diphenyl-1,3,5-pentanetrionato)dicobalt(II) [Co2(dba)2], and [6,11-dimethyl-7,10-diazahexadeca-5,11-diene-2,4,13,15-tetranato(4-)-N7N10O4O13;O2O4O13O15] copper(II)cobalt(II) [(CuCo(daaen)] were supported on Cab-O-Sil by the batch impregnation technique. The supported samples were characterized by UV-Vis, elemental analysis, X-ray powder diffraction (XRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and thermal gravimetric analysis (TGA). Elemental analysis and TGA data confirm that the Cu2(daa)2 complex loses one of its coordinated ligands upon adsorption onto silica in THF at greater than 4.43 wt% Cu loading. By contrast, at all Cu loadings the Cu2(dba)2 complex was adsorbed on the silica surface in CH2Cl2 without loss of ligand. XRD and DRIFTS results confirmed the formation of Cu2(dba)2 multilayer films on the Cab-O-Sil surface for samples containing greater than 2.64 wt% copper. The dinuclear cobalt complex and copper-cobalt complex also do not lose their coordination ligands upon adsorption on the surface. These two metal complexes are amorphous and did not produce XRD patterns. However, DRIFTS results confirm that the binuclear cobalt complex and the copper-cobalt complex begin forming multilayer films between 1.21and 2.53 wt% Cu. The Cu2(dba)2/silica precatalysts were subsequently converted to the catalysts by decomposing the organic ligands at 450 degrees Celsius followed by activation with 2% H2 at 250 degrees Celsius and were evaluated for methanol synthesis and methanol decomposition reactions. Kinetic studies demonstrated that the 3.70% Cu/silica[Cu2(dba)2] catalyst is more active for methanol decomposition than it is for methanol synthesis. The supported dinuclear cobalt and copper-cobalt precatalysts were converted to the catalyst by heating at 450 degrees Celsius followed by activation of the catalysts with 50% H2. Four different catalysts, 3.5% Co/silica[Co2(dba)2], 6.7% Co/silica[Co2(dba)2], 2.3% Co/silica[CuCo(daaen)], and 5.5% Co/silica[Co2(daa)2] were evaluated for the Fischer-Tropsch reaction at 350 degrees Celsius in a batch reactor. The supported binuclear cobalt catalyst produced C1-C7 alkanes and a significant amount of CO2. By contrast, the catalyst formed from heterobinuclear CuCo(daaen) showed the ability to convert syngas to aromatics with a narrow product distribution. In addition, the 6.7% Co/silica[Co2(dba)2] multilayer catalysts have above 98% conversion rates and 60% liquid hydrocarbon selectivity in a flow reactor.
|
177 |
Preparation of Active, Stable Supported Iron Catalysts and Deactivation by Carbon of Cobalt Catalysts for Fischer-Tropsch SynthesisKeyvanloo, Kamyar 01 November 2014 (has links) (PDF)
The first half of this dissertation reports the development of supported Fe FT catalysts including the effects of various, carefully chosen preparation methods on the performance of alumina-supported iron/copper/potassium (FeCuK/Al2O3); it was determined that non-aqueous slurry impregnation and co-impregnation yielded catalysts with activities as high as any reported in the literature. Furthermore, the effects of support properties including pore size, hydroxyl group concentration, and support stabilizer were investigated for FeCuK/Al2O3 catalysts containing 20 or 40% Fe. For the first time, we report the performance of a supported Fe FT catalyst that is not only more active and stable than any supported Fe catalyst previously reported, but also has activity equivalent to that of the most active, unsupported catalysts. More importantly, the catalyst is extremely stable as evidenced by the fact that after 700 h on stream, its activity and productivity are still increasing. These catalyst properties result from the use of a novel γ-alumina support material doped with silica and pretreated at 1100°C. This unique support has a high pore volume, large pore diameter, and unusually high thermal stability. The ability to pretreat this support at 1100°C enables preparation of a material having a low number of acid sites and weak metal oxide-support interactions, all desirable properties for an FT catalyst. The second half of this dissertation investigates the effects of operating conditions including the partial pressures of CO and H2 and temperature on the deactivation by carbon of 25 wt% Co/ 0.25 wt% Pt/Al2O3 catalyst. It also reports the kinetics of the main FT reaction on this catalyst. As temperature increases, the H2 and CO orders for the main reaction (in the absence of deactivation) become more positive and more negative, respectively. A new mechanism was proposed to account for the inhibition effect of CO at high reaction temperatures, which includes H-assisted dissociation of CO to C* and OH*. Further, twelve samples of the CoPt/Al2O3 catalyst were tested over a period of 800 hours and XCO < 24%, each at a different set of CO and H2 partial pressures and temperature (220-250°C). At reaction temperature of 230°C, increasing PCO or PH2 increases the deactivation rate; possibly due to formation of polymeric carbons. The H2 and CO partial pressure orders for the deactivation rate at 230°C were found to be 1.12 and 1.43, respectively using a generalized-power-law-expression (GPLE) with limiting activity of 0.7 and 1st order deactivation. For a H2/CO of 2 (PH2 = 10 bar and PCO = 5 bar) the deactivation rate increases as process temperature increases from 220 to 250°C with an activation energy of 81 kJ/mol. However, at higher CO partial pressure (PCO = 10 bar) the deactivation rate for the Co catalyst of this study decreases with increasing temperature; this can possibly be attributed to the formation of more active cobalt sites at higher temperatures due to surface reconstruction.
|
178 |
Novel Iron Catalyst and Fixed-Bed Reactor Model for the Fischer-Tropsch SynthesisBrunner, Kyle Martin 09 August 2012 (has links) (PDF)
This work investigates a novel iron Fischer-Tropsch (FT) catalyst preparation and describes the development of a trickle fixed-bed recycle reactor model (TFBRRM) for the FT synthesis applicable to both iron and cobalt catalysts. The iron catalyst preparation was developed using a novel solvent deficient precipitation reaction. Fifteen Fe/Cu/K/SiO2 catalysts were prepared to investigate key preparation variables including timing of promoter addition, washing or not washing after precipitation, and drying temperature. Adding promoters to starting materials before precipitation (1S) gives more uniform promoter distributions which gives higher water-gas shift activity and lower methane selectivity. Unwashed catalysts have smaller average pore and crystallite diameters (3.9-10.8 nm versus 15.3-29.5 nm) and 30% smaller pore volumes, but 65% higher rates of reaction than washed catalysts. Catalysts dried first at 100 °C have up to 50% smaller average pore and crystallite diameters, but 10-20% higher rates of reaction than catalysts dried first at 60 °C. Overall, 1S catalysts, left unwashed, and dried first at 100 °C are best suited in activity, selectivity, and stability for wax production from hydrogen-deficient feed stocks such as coal, biomass, or municipal waste. The activity of the most active catalyst of this study is greater than or equal to the activities of two of three catalysts reported in the literature. This dissertation describes in detail the TFBRRM, reports its validation, and presents results of varying fundamental, theoretically-based parameters (e.g. effective diffusivity, Prandtl number, friction factor, etc.) as well as physical process parameters (i.e. recycle ratio, pressure, flow rate, tube diameter, cooling temperature, and pellet diameter and shape). For example, the model predicts that decreasing effective diffusivity from 7.1E-9 to 2.8E-9 m^2/s results in a lower maximum temperature (from 523 to 518 K) and a longer required bed length to achieve 60% conversion of CO (from 5.7 to 8.5 m). Using the Tallmadge equation to estimate friction losses as recommended by the author results in a pressure drop 40% smaller than using the Ergun equation. Validation of the model was accomplished by matching published full-scale plant data from the SASOL Arge reactors.
|
179 |
Kinetic Experimental and Modeling Studies on Iron-Based Catalysts Promoted with Lanthana for the High-Temperature Water-Gas Shift Reaction Characterized with Operando UV-Visible Spectroscopy and for the Fischer-Tropsch SynthesisHallac, Basseem Bishara 01 December 2014 (has links) (PDF)
The structural and functional roles of lanthana in unsupported iron-based catalysts for the high-temperature water-gas shift reaction and Fischer-Tropsch synthesis were investigated. The performance of the catalysts with varying lanthana contents was based on their activity, selectivity, and stability. With regard to the former reaction, extent of reduction of the iron in Fe2O3/Cr2O3/CuO/La2O3 water-gas shift catalysts is a key parameter that was characterized using UV-visible spectroscopy. Minor addition of lanthana (<0.5 wt%) produces more active and stable catalysts apparently because it stabilizes the iron-chromium spinel, increases the surface area of the reduced catalysts, enhances the reduction of hematite to the magnetite active phase, and facilitates the adsorption of CO on the surface of the catalyst modeled by an adsorptive Langmuir-Hinshelwood mechanism. Statistical 95% confidence contour plots of the adsorption equilibrium constants show that water adsorbs more strongly than CO, which inhibits the reaction rate. A calibration curve that correlates the oxidation state of surface iron domains to normalized absorbance of visible light was successfully generated and applied to the water-gas shift catalysts. UV-visible studies indicated higher extent of reduction for surface Fe domains for the catalysts promoted with 1 wt% of lanthana and showed potential to be a more convenient technique for surface chemistry studies than X-ray absorption near edge spectroscopy (XANES). Lanthana addition to iron-based Fischer-Tropsch catalysts enhances the olefin-to-paraffin ratio, but decreases their activity, stability, and selectivity to liquid hydrocarbons. Adding lanthana at the expense of potassium reduces the water-gas shift selectivity and enhances the activity and stability of the catalysts. Finally, a model that simulates heat and mass transfer limitations on the particle scale for the Fischer-Tropsch reaction applicable at lab-scale suggests optimal operating and design conditions of 256°C, 30 bar, and 80 mirons are recommended for higher selectivity to liquid hydrocarbons. The model considers pressure drop, deactivation, pore diffusion, film heat transfer, and internal heat transfer when solving for the optimal conditions, and maps them as functions of design variables. This model can be up-scaled to provide guidance for optimal design of commercial-size reactors.
|
180 |
Water Footprint Of Aviation Fuel Synthesis By The Fischer Tropsch Process Using Sugar Cane Waste & Landfill Gas As FeedstocksMenzli, Slim 01 January 2008 (has links)
The recent spikes in oil prices have spurred an already bullish demand on biofuels as a source of alternative energy. However, the unprecedented price records set simultaneously by staple food have raised high concerns about potential impacts of biofuels on the global agricultural landscape as fuel and food markets are being inextricably coupled. The revival of interest in the Fischer-Tropsch (FT) process comes into full force since it offers a promising way to produce carbon-neutral liquid fuels which are readily usable with today's existing infrastructure. The FT synthesis offers the possibility of using crop waste as feedstock instead of the crop itself thus avoiding the risk of further straining water and land resources while helping to alleviate the national energy bill and to achieve independence from foreign oil. As the airline industry is the hardest-hit sector with fuel jumping ahead of labor as the primary cost item, this thesis investigates the prospects of the FT process to transform sugar cane waste (namely bagasse, tops and green leaves) and landfill gas in order to produce kerosene (C12H26) as jet fuel for civil aviation. Established chemical correlations and thermodynamics of chemical reactions are used to assess the water footprint inherent to kerosene production using the above feedstocks at optimal conditions of temperature, pressure, catalyst and reactor type. It has been estimated that 9 to 19 gallons of water are needed for every gallon of kerosene produced. In addition, for the case of sugar cane, less land area per unit energy is required compared to ethanol production since all non-food waste of the plant can be used to produce FT fuel as opposed to ethanol which would utilize only the sugar (food) portion of the plant. This translates into a much lower water footprint for irrigation and consequently a lower water footprint overall.
|
Page generated in 0.0941 seconds