• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ichthyophthirius multifiliis Fouquet : development and assessment of in vitro systems for long term maintenance

Hurley, Louise Margaret January 1999 (has links)
Twelve isolates of Ichthyophthirius multifiliis were successfully established and maintained by serial passage through naïve carp, for a maximum of 39 laboratory cycles. The management system employed was such that large numbers of the parasite were available for all investigations. The ability to induce exit of immature trophonts through media incubation was used to confirm events in the initial stages of host colonisation. The normal course of primary infection was also established providing useful criteria for assessing success of the in vitro systems tested. Survival of both theronts and tomonts within selected monophasic media was investigated. Theronts in Eagles Minimum Essential medium (EMEM), survived and were viable for 120 hours, 72 hours longer than water controls. No further development of the theronts was observed. Tomonts also demonstrated an increased survival time in comparison to the controls with tomites surviving within the cyst for 22 days within EMEM-S media diluted 50:50 with sterile distilled water. Division of tomonts was identified as being precystic, post divisional cystic or cystic, and the frequency of such divisions was dependent upon dilution of media. Sterile viable theronts were recovered at 168h from tomonts that had been incubated within EMEM diluted 30:70 with distilled water. Delayed encystment was achieved by incubation in concentrated media, theront production being delayed for 96h, 72h later than seen in the aquatic environment. Cultured cell monolayers were used as associates within culture systems. Behaviour of theronts on introduction into the culture systems indicated recognition of the cultured tissue as potential host material, sustained contact of up to l20hours was observed between the introduced parasite and cells. However, no developmental markers were identified within the cultured parasite and no significant growth was achieved. Attempts to simulate the situation in vivo by use of multilayered systems and crude cell explants were also unsuccessful. Transmission electron microscopy of the parasite within a cell aggregate system was undertaken at daily intervals up to 120h providing evidence that the parasite was attempting to gain nutrients by phagocytosis. However, increased vacuolation of the parasite during the period of culture was clearly evident leading eventually to parasite death. The significance of the results is discussed in relation to the normal course of infection and the future promise of a long term culture method for this important pathogen.
2

Non-targeted Effects of lonizing Radiation in Fish Cell Lines

O'Neill, Alicia 01 1900 (has links)
<p> This study is one of the first to examine non-targeted effects of radiation in fish cell lines, with the aim of identifying a reliable reporter system for evaluating radiation damage in fish. The ability of the fish cell lines to clone was determined as the clonogenic assay was a major end point used to measure survival. A direct survival curve was completed for all cell lines that were deemed clonogenic using a cobalt-60 γ-radiation source. Non-targeted effects of radiation were evaluated by conducting bystander experiments on all fish cell lines. Delayed Cell Death (DCD) experiments were completed on the fish cell line that showed evidence of a cell death associated bystander effect as these phenomena may be linked. Four of the eight cell lines were found to be clonogenic. The cell line, RTG-2, was found to be the most radiosensitive at lower doses. All of the clonogenic cell lines, with the exception ofRTG-2 cells, generally showed increased Plating Efficiency (P.E.) when Irradiated Cell Conditioned Media (ICCM) was tested on unirradiated autologous cells. ICCM from the clonogenic and non-clonogenic cells was also tested on the mammalian cell line. This resulted in increased cell survival, with the exception of the RTS-pBk+ (p<O.OOl), RTS-34st (p<O.Ol) and ZEB 2J (p<0.05) cell lines. Since RTG-2 showed the most prominent cell killing bystander effect, DCD experiments were performed on this cell line. DCD was found in the progeny of irradiated parental cells at all doses tested. Cell kinetics also showed the generation of possible DCD. The results show that both bystander signal production and cellular responses vary depending on the cell line and that DCD and bystander effects are tentatively linked through genomic instability. The RTG-2 cell line may be a suitable model for a reliable reporter system to aid in determining the nontargeted effects of radiation in fish in the environment. </p> / Thesis / Master of Science (MSc)
3

Developing and characterizing a salmonid intestinal epithelial cell line for use in studies of inflammation in the fish gastrointestinal tract

Kawano, Atsushi January 2009 (has links)
An intestinal cell line from rainbow trout, Oncorhynchus mykiss, was developed and challenged against several bioactive components. Primary cultures initiated from the distal segment produced the cell line, RTgutGC. RTgutGC showed optimal growth in L15 supplemented with 10-20% fetal bovine serum (FBS) at room temperature. RTgutGC has undergone over 100 passages and stained minimally for β-galactosidase, suggesting this to be an immortal cell line. Late passage cultures gave a consistent polygonal morphology with distinct borders. RTgutGC stained positive for alkaline phosphatase (AP) under certain culture conditions, hence may produce intestinal-specific alkaline phosphatase (IAP). Lipopolysaccharide (LPS) was used as a model microbial endotoxin for determining the sensitivity of the cells to a natural ligand in the gastrointestinal tract (GIT). Exposure of LPS was compared between RTgutGC and two mammalian intestinal cell lines (HT-29 and Caco-2). LPS induced cell death in RTgutGC, potentially through an alternative pathway seen in higher vertebrate response. Cytotoxicity of LPS against RTgutGC, seeded at normal density, was reduced in the presence of glutamine compared to L15 alone (t test, p≤ 0.05). RTgutGC seeded at a super density, where AP was strongly expressed, also showed less toxicity towards LPS. Two isoforms of tumor necrosis factor alpha (TNF-α) transcripts were up-regulated after LPS treatment in RTgutGC. Six rainbow trout cell lines, including RTgutGC, showed constitutive transcript expression of several immune-related genes: Major Histocompatibility (MH) class II α and ß. When MH activity was examined at the protein level, the cell lines showed constitutive expression of MH class I proteins, but not for MH class II molecules. RTS11, a rainbow trout spleen monocyte/ macrophage-like cell line, was the only line to express all MH transcripts and proteins. The utility of the anti-rainbow trout MH protein sera was demonstrated by exposing RTgutGC to poly IC. After a 3 day treatment, RTgutGC showed up-regulation of β2m protein expression. Thus, the cellular and immunological responses in fish intestinal cells can be modeled using the methods presented in this study.
4

Developing and characterizing a salmonid intestinal epithelial cell line for use in studies of inflammation in the fish gastrointestinal tract

Kawano, Atsushi January 2009 (has links)
An intestinal cell line from rainbow trout, Oncorhynchus mykiss, was developed and challenged against several bioactive components. Primary cultures initiated from the distal segment produced the cell line, RTgutGC. RTgutGC showed optimal growth in L15 supplemented with 10-20% fetal bovine serum (FBS) at room temperature. RTgutGC has undergone over 100 passages and stained minimally for β-galactosidase, suggesting this to be an immortal cell line. Late passage cultures gave a consistent polygonal morphology with distinct borders. RTgutGC stained positive for alkaline phosphatase (AP) under certain culture conditions, hence may produce intestinal-specific alkaline phosphatase (IAP). Lipopolysaccharide (LPS) was used as a model microbial endotoxin for determining the sensitivity of the cells to a natural ligand in the gastrointestinal tract (GIT). Exposure of LPS was compared between RTgutGC and two mammalian intestinal cell lines (HT-29 and Caco-2). LPS induced cell death in RTgutGC, potentially through an alternative pathway seen in higher vertebrate response. Cytotoxicity of LPS against RTgutGC, seeded at normal density, was reduced in the presence of glutamine compared to L15 alone (t test, p≤ 0.05). RTgutGC seeded at a super density, where AP was strongly expressed, also showed less toxicity towards LPS. Two isoforms of tumor necrosis factor alpha (TNF-α) transcripts were up-regulated after LPS treatment in RTgutGC. Six rainbow trout cell lines, including RTgutGC, showed constitutive transcript expression of several immune-related genes: Major Histocompatibility (MH) class II α and ß. When MH activity was examined at the protein level, the cell lines showed constitutive expression of MH class I proteins, but not for MH class II molecules. RTS11, a rainbow trout spleen monocyte/ macrophage-like cell line, was the only line to express all MH transcripts and proteins. The utility of the anti-rainbow trout MH protein sera was demonstrated by exposing RTgutGC to poly IC. After a 3 day treatment, RTgutGC showed up-regulation of β2m protein expression. Thus, the cellular and immunological responses in fish intestinal cells can be modeled using the methods presented in this study.
5

Studies on the cryopreservation and in vitro culture of Amyloodinium ocellatum

Yang, Chu-Ya 04 August 2006 (has links)
The Amyloodinium ocellatum was collected from cobia ( Rachycentron canadum ) gill and four tests including 4 ¢J storage, toxicity of cryoprotectant, cryopreservation and in vitro cultivation on fish cell line were conducted to establish the methods of preservation of Amyloodinium ocellatum. Survival of trophont, morphology and division of tomont and number of dinospore released were evaluated the effects of this study. The results showed that division irregulated, delayed and stopped of the tomont were found after stored at 4 ¢J over 48 hours. It was produced 1.08 x 10 4 cell/ml dinospores from 1 x 10 3 trophont at 4 ¢J, 24 hours storage group and significant higher ( p¡Õ0.0001 ) than other storage groups. For the toxicity of cryoprotectant, the concentration of DMSO 3~10¢M, Glycerol 3~10¢M, Methanol 3~10¢M, Ethanol 3~5¢M, PrOH 3~5¢M, DMAc 3~5¢M, Sucrose 3~15¢M, Trehalose 3~15¢M, Dextran 3~5¢Mand Ficoll 3~10¢Mwere safety to use on A. ocellatum trophont preservation. It was unsuccessful to cryopreserve the trophont of A. ocellatum when stored at direct liquid N2 freezing, different -20 ¢J freezing time, -1 ¢J min-1 freezing container and different cryoprotectant equilibration time contain 10¢MGlycerol and DMSO, respectively. Using the U-shaped tube of sigle and double loop could gain pure and bacteria-free dinospores. The results of in vitro cultivation of A. ocellatum showed that eel epidermis and cobia fin cell line with different culture mediums were unable to grow the trophont and tomont of A. ocellatum.
6

Intérêt des lignées cellulaires de poisson en écotoxicologie pour l'étude de nouveaux biomarqueurs de génotoxicité / Interest of fish cell line in ecotoxicology for the developpment of new genotoxicity biomarkers

Kienzler, Aude 15 March 2013 (has links)
Un contexte réglementaire de plus en plus strict en évaluation du risque écotoxicologique des milieux aquatiques exige de renforcer les outils d’évaluation. A ce titre, l’étude des biomarqueurs de génotoxicité doit être privilégiée, compte tenu du rôle central de l’ADN dans le fonctionnement du vivant. L’exposition à des agents génotoxiques peut générer des dommages par interaction directe avec l’ADN, mais aussi indirectement, en modulant l’efficacité des mécanismes de réparation de l’ADN, ou la régulation épigénétique de l’expression des gènes. Aujourd’hui, la plupart des biomarqueurs de génotoxicité visent les dommages primaires à l’ADN ou la mutagènicité mais les effets indirects sur sa fonctionnalité sont encore peu étudiés. Dans ce contexte, à l’issue d’une analyse bibliographique comprenant la rédaction d’une revue sur les mécanismes de réparation des dommages à l’ADN chez le poisson, ce travail visait au développement méthodologique de plusieurs biomarqueurs de génotoxicité à l’aide de trois lignées cellulaires pisciaires (RTL-W1, RTGill-W1 et PLHC-1). Pour ce faire, l’essai des comètes en conditions alcalines a été décliné sous plusieurs versions dans l’objectif d’utiliser une technique de base unique permettant la mesure complémentaire de plusieurs biomarqueurs de génotoxicité : les dommages primaires à l’ADN, les activités de réparation et le niveau de méthylation des cytosines du génome. Les résultats soulignent l’intérêt des trois lignées en évaluation de la génotoxicité 1) pour détecter in vitro de manière sensible des atteintes primaires à l’ADN de natures variées à de faibles concentrations grâce à un essai des comètes modifié par une étape de digestion enzymatique avec une glycosylase (Fpg), 2) pour évaluer l’influence des contaminants sur l’activité de réparation par excision de bases (BER) via la mesure de la capacité d’incision d’un ADN substrat porteur de lésions de type 8-oxoGua par des extraits cellulaires (essai BERc). Le niveau de méthylation des cytosines (5-meCyt) des lignées RTgill-W1et RTL-W1 a été mesuré par HPLC-MS-MS, leur valeur élevée permet d’envisager le paramètre méthylation comme biomarqueur potentiel. Ce volet nécessitera cependant des étapes de validations ultérieures car il n’a pas été techniquement possible de mettre au point un essai des comètes modifié pour la mesure du niveau de méthylation de l’ADN. Plusieurs activités de réparation des lignées RTgill-W1 et RTL-W1 ont été caractérisées et révèlent de bonnes aptitudes de réparation de type « Base Excision Repair » (BER) et « Photo Enzymatic Repair » (PER) et une plus faible capacité au « Nucleotide Excision Repair » (NER), soit un profil proche de celui décrit in vivo et sans différence marquée entre les deux lignées. Les biomarqueurs développés sur les lignées cellulaires de poisson au cours de ce travail ont également été appliqués à la mesure des effets génotoxiques d’effluents issus du lessivage de revêtements routiers. / In a context of growing awareness of aquatic pollution impacts, there is an increasing need to develop methods for hazards and risk assessment of pollutants. In this context, genotoxicity endpoints are of a great concern since even when evaluated at a sub-cellular or cellular level, impaired DNA structure, repair and/or functions can have delayed (long term) consequences at higher level of organization such as individual and population. Some genotoxicant can have direct effect on DNA, but they can also interact indirectly, by modulating the repair mechanism efficiency or by acting on epigenetic mechanism such as DNA méthylation level. An unrepaired DNA damage and epigenetic modification can both lead to functional alteration and/or genetic structure at the population level. However, most of the existing genotoxicity test only measure primary DNA damage induces by genotoxicant; thus there is a real need to develop new tools to investigate those different kinds of genotoxicity. For this purpose, this work aims at developing knowledge in DNA repair capacities of to fish cell lines, RTL-W1 and RTG-W1, in order to develop new genotoxicity biomarker, measuring primary DNA damage by means of modified version of the comet assay. The results highlights the interest of in vitro biological models such as fish cell lines for the assessment of environmental genotoxicity, especially using a Fpg-modified comet assay allowing a sufficient increase of the assay sensibility to detect genotoxicity at environmentally relevant concentration. Results also characterize BER and PER capacities as being efficient repair mechanism in those fish cell lines, whereas NER, although also present, seems less efficient. A new biomarker based on the BER incision capacities of cellular extracts has also been developed and used to assess the genotoxicity of environemental effluent.
7

Využití tkáňových linií pro toxikologii v životním prostředí / Utilization of tissue cultures for toxicology of the environment.

Polanská, Daniela January 2020 (has links)
5 Abstract Five substances from the group of so-called personal care products, known for their low degradability and regular environmental detection, were tested for toxicity using two fish tissue lines (RTgill-W1 a RTG-2) isolated from rainbow trout (Oncorhynchus miykiss). The tested substances were hexadecylpyridinium chloride (HDP), chlorhexidine (CHX), octenidine (OCT), thymol (THM) and triclosan (TCS). A cell viability assay was performed with each of these compounds using Alamar Blue ™ (AB), 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) and neutral red (NR) protocols. The results were used to construct dose-response curves along with an EC50 value for each of these substances. The EC50 values ranged from 0,51 (HDP) to 33,75 µg.ml-1 (THM) for RTgill-W1 and from 0,31 (HDP) to 33,37 µg.ml-1 (THM) for RTG-2. The theoretical LC50 estimation was calculated according to Tanneberger et al. (2013). For all substances, cytochrome P450 1A activity was monitored using 7-ethoxyresorufin-o-deethylase (EROD), four out of five tested chemicals were statistically positive for EROD, the highest EROD response was observed for the most toxic compound - HDP. Only TCS did not show statistically significant cytochrome P450 1A activity. In addition, oxidative stress was measured with the fluorescent dye...
8

Anwendung des Comet Assay (Einzelzell-Gelelektrophorese) an Zellen von Fischen zum Nachweis gentoxischer Wirkungen im aquatischen Biomonitoring

Nehls, Sebastian 14 October 2013 (has links)
Gewässer sind Lebensgrundlage, jedoch gleichzeitig Schadstoffsenken für eine Vielzahl von Kontaminanten. Biologische Wirkungstests und das Biomonitoring aquatischer Proben sind daher besonders wichtig, um Umwelt-Gefahrenpotenziale erkennen zu können. Der "Comet Assay" (Einzelzell-Gelelektrophorese) ist ein Indikator von DNA-Strangbrüchen und wurde hier als Test auf gentoxische Wirkungen erprobt und angewandt. Mit bekannten, gentoxischen Substanzen wurden Nachweisgrenzen und Dosis-Wirkungs-Beziehungen für die Zelllinien RTG-2 und RTL-W1 (aus der Regenbogenforelle, Oncorhynchus mykiss) in vitro ermittelt und methodische Parameter an die Zellen angepasst. Der Test reagierte sehr sensitiv auf 4-Nitrochinolin-1-oxid. Die Substanz war daher geeignet, um in weiteren Versuchen als Positivkontrolle zu dienen. Zur Bewertung der Messdaten wurde ein geeignetes statistisches Verfahren gefunden, das auch historische Kontrollen mit einbezog. Der zeitliche Verlauf der DNA-Schädigung des Testsystems mit RTG-2-Zellen wurde ermittelt, und durch Inhibition der DNA-Reparatur mit Aphidicolin wurden Zusammenhänge zwischen der Entstehung von DNA-Strangbrüchen, der DNA-Reparaturkapazität sowie der Metabolisierungskapazität untersucht. In einer zweiten Phase wurden unbehandelte Wasserproben aus Rhein, Elbe sowie weitere Oberflächenwasserproben mit dem Comet Assay an RTG-2-Zellen getestet. Bei 15 von 49 Proben zeigten sich gentoxische Effekte. In einer dritten Phase wurden Erythrozyten von freilebenden Döbeln, Leuciscus cephalus, aus der Mosel mit dem Comet Assay untersucht. Die Fische von drei Messstellen zeigten erhöhte Werte von DNA-Schädigungen, gegenüber einer vierten, stromabwärts gelegenen Messstation. Korrelationen mit den Ergebnissen zusätzlicher Biomarker ergaben sich nur teilweise. Chemische Analysen von Wasser- oder Gewebeproben ließen keine Rückschlüsse auf verursachende Kontaminanten zu - gerade dies unterstreicht jedoch die Wichtigkeit biologischer Tests bei komplexen Proben. / Bodies of Water are both vital resources and pollutant sinks for a multitude of contaminants. Therefore, biological effect tests and biomonitoring of aquatic samples are of particular importance to detect potential environmental hazards. The "comet assay" (single cell gel electrophoresis) is an indicator for DNA strand breaks and was explored and applied as a genotoxicity test in the present study. Known genotoxic substances were used to determine the detection limits and dose-response relationships for the cell lines RTG-2 and RTL-W1 (from rainbow trout, Oncorhynchus mykiss) in vitro, and to adapt methodological parameters to the cells. The test was very sensitive to 4-Nitroquinoline-1-oxide. This substance was therefore well-suited to serve as positive control in further experiments. In order to evaluate the measurement data, an appropriate statistical procedure was developed, which also took "historical" controls into account. The time course of DNA damage in the test system using RTG-2 cells was determined, and relationships between the origin of DNA strand breaks, DNA repair capacity and the metabolizing capacity of the cells was investigated by means of inhibition of DNA repair with Aphidicoline. In the second stage, native water samples from the rivers Rhine and Elbe and further surface waters were tested with the comet assay, using RTG-2 cells. 15 out of 49 samples showed genotoxic effects. In a third stage, erythrocytes of feral chub, Leuciscus cephalus, from the Moselle river were examined with the comet assay. The fish from three measuring stations showed elevated values of DNA damage compared to fish sampled from a downstream station. There were only partly correlations with the results from additional biomarkers. Chemical analyses of water and tissue samples did not permit conclusions on effect-causing substances.However, this emphasizes the importance of biological tests in dealing with complex environmental samples.

Page generated in 0.06 seconds