Spelling suggestions: "subject:"fjärrlutning"" "subject:"fjärrlotsning""
1 |
Safe Reinforcement Learning for Remote Electrical Tilt Optimization / Optimering av Fjärrlutning med Säker FörstärkningsinlärningIakovidis, Grigorios January 2021 (has links)
The adjustment of the vertical tilt angle of Base Station (BS) antennas, also known as Remote Electrical Tilt (RET) optimization, is a simple and efficient method of optimizing modern telecommunications networks. Reinforcement Learning (RL) is a machine learning framework that can solve complex problems like RET optimization due to its capability to learn from experience and adapt to dynamic environments. However, conventional RL methods involve trial-and-error processes which can result in short periods of poor network performance which is unacceptable to mobile network operators. This unreliability has prevented RL solutions from being deployed in real-world mobile networks. In this thesis, we formulate the RET optimization problem as a Safe Reinforcement Learning (SRL) problem and attempt to train an RL policy that can offer performance improvement guarantees with respect to an existing baseline policy. We utilize a recent SRL method called Safe Policy Improvement through Baseline Bootstrapping (SPIBB) to improve over a baseline by training an RL agent on a offline dataset of environment interactions gathered by the baseline. We evaluate our solution using a simulated environment and show that it is effective at improving a tilt update policy in a safe manner, thus providing a more reliable RL solution to the RET optimization problem and potentially enabling future real-world deployment. / Justeringen av den vertikala lutningsvinkeln hos basstationens antenner, även kallad Remote Electrical Tilt (RET) optimering, är en enkel och effektiv metod för att optimera moderna telenät. Förstärkningsinlärning är en maskininlärningsram som kan lösa komplexa problem som RET-optimering tack vare dess förmåga att lära sig av erfarenhet och anpassa sig till dynamiska miljöer. Konventionella förstärkningsinlärning metoder innebär emellertid försök och felprocesser som kan leda till korta perioder av dålig nätverksprestanda, vilket är oacceptabelt förmobilnätoperatörerna. Denna otillförlitlighet har hindrat förstärkningsinlärning lösningar från att användas i verkliga mobila nätverk. I denna hypotes formulerar vi problemet med RET-optimering som ett problem med Säker Förstärkningsinlärning(SF) och försöker utbilda en förstärkningsinlärning policy som kan erbjuda garantier för förbättrad prestanda i förhållande till en befintlig grundläggandepolicy. Vi använder en nyligen genomförd SF-metod som kallas Safe PolicyImprovement by Baseline Bootstrapping (SPIBB) för att förbättra en baslinje genom att utbilda en förstärkningsinlärning agent på en offlinedatabaserad datamängdmed miljöinteraktioner som samlats in vid baslinjen. Vi utvärderar vår lösning med hjälp av en simulerad miljö och visar att den är effektiv när det gäller att förbättra politiken för tippuppdatering på ett säkert sätt, vilket ger en mer tillförlitligförstärkningsinlärning lösning på problemet med RET-optimering och eventuellt möjliggör framtida realglobal driftsättning.
|
2 |
Offline Reinforcement Learning for Remote Electrical Tilt Optimization : An application of Conservative Q-Learning / Offline förstärkningsinlärning för fjärran antennlutningsoptimering : En tillämpning av konservativ Q-inlärningKastengren, Marcus January 2021 (has links)
In telecom networks adjusting the tilt of antennas in an optimal manner, the so called remote electrical tilt (RET) optimization, is a method to ensure quality of service (QoS) for network users. Tilt adjustments made during operations in real-world networks are usually executed through a suboptimal policy, and a significant amount of data is collected during the execution of such policy. The policy collecting the data is known as the behavior policy and can be used to learn improved tilt update policies in an offline manner. In this thesis the RET optimization problem is formulated in a offline Reinforcement Learning (RL) setting, where the objective is to learn an optimal policy from batches of data collected by the logging policy. Offline RL is a challenging problem where traditional RL algorithms can fail to learn policies that will perform well when evaluated online.In this thesis Conservative Q-learning (CQL) is applied to tackle the challenges of offline RL, with the purpose of learning improved policies for tilt adjustment from data in a simulated environment. Experiments are made with different types of function approximators to model the Q-function. Specifically, an Artificial Neural Network (ANN) and a linear model are employed in the experiments. With linear function approximation, two novel algorithms which combine the properties of CQL and the classic Least Squares Policy Iteration (LSPI) algorithm are proposed. They are also used for learning RET adjustment policies. In online evaluation in the simulator one of the proposed algorithms with simple linear function approximation achieves similar results to CQL with the more complex artificial neural network function approximator. These versions of CQL outperform both the behavior policy and the naive Deep Q-Networks (DQN) method. / I telekomnätverk är justering av lutningen av antenner, kallat Remote Electrical Tilt (RET) optimering en metod för att säkerställa servicekvalitet för användare av nätverket. Justeringar under drift är gjorda med ickeoptimala riktlinjer men gjort på ett säkert sätt och data samlas in under driften. Denna datan kan potentiellt användas för att skaffa fram bättre riktlinjer för att justera antennlutningen.Antennlutningsproblemet kan formuleras som ett offline-förstärkandeinlärningsproblem, där målet är att ta fram optimala riktlinjer från ett dataset. Offline-förstärkningsinlärning är ett utmanande problem där naiva implementationer av traditionella förstärkningsinlärnings-algoritmer kan fallera.I denna masteruppsats används metoden konservativ Q-inlärning (CQL) för att tackla utmaningarna hos offline-förstärkningsinlärning och för att hitta förbättrade riktlinjer för antennlutningsjusteringar i en simulerad miljö. Problem-uppställningens egenskaper gör att Q-inlärningsmetoder som CQL behöver funktions-approximatorer för modellera Q-funktionen. I denna masteruppsats görs experiment med både expressiva artificiella neurala nätverk och linjära kombinationer av simpla basfunktioner som funktions-approximatorer.I fallet med linjära funktions-approximatorer så föreslås två nya algoritmer som kombinerar egenskaperna hos CQL med den klassiska förstäkningsinlärningsalgoritmen minsta-kvadrat policyiteration (LSPI) som sedan också används för att skapa riktlinjer för antennlutningsjustering.Resultaten visar att CQL med artificiella neurala nätverk och en av dom föreslagna algoritmerna kan lära sig riktlinjer med bättre resultat en både riktlinjerna som samlade in träningsdatan och den klassiska metoden djupt Q-nätverk applicerad offline.
|
3 |
Explainable Reinforcement Learning for Remote Electrical Tilt OptimizationMirzaian, Artin January 2022 (has links)
Controlling antennas’ vertical tilt through Remote Electrical Tilt (RET) is an effective method to optimize network performance. Reinforcement Learning (RL) algorithms such as Deep Reinforcement Learning (DRL) have been shown to be successful for RET optimization. One issue with DRL is that DRL models have a black box nature where it is difficult to ’explain’ the decisions made in a human-understandable way. Explanations of a model’s decisions are beneficial for a user not only to understand but also to intervene and modify the RL model. In this work, a state-ofthe-art Explainable Reinforcement Learning (XRL) method is evaluated on the RET optimization problem. More specifically, the chosen XRL method is the Embedded Self-Prediction (ESP) model proposed by Lin, Lam, and Fern [16] which can generate contrastive explanations in terms of why an action is preferred over the other. The ESP model was evaluated on two different RET optimization scenarios. The first scenario is formulated as a single agent RL problem in a ’simple’ environment whereas the second scenario is formulated as a multi agent RL problem with a more complex environment. In both scenarios, the results show little to no difference in performance compared to a baseline Deep Q-Network (DQN) algorithm. Finally, the explanations of the model were validated by comparing them to action outcomes. The conclusions of this work is that the ESP model offers explanations of its behaviour with no performance decrease compared to a baseline DQN and the generated explanations offer value in debugging and understanding the given problem. / Att styra antenners vertikala lutning genom RET är en effektiv metod för att optimera nätverksprestanda. RL-algoritmer som DRL har visat sig vara framgångsrika för REToptimering. Ett problem med DRL är att DRL-modeller är som en svart låda där det är svårt att ’förklara’ de beslut som fattas på ett sätt som är begripligt för människor. Förklaringar av en modells beslut är fördelaktiga för en användare inte bara för att förstå utan också för att ingripa och modifiera RL-modellen. I detta arbete utvärderas en toppmodern XRL-metod på RET-optimeringsproblemet. Mer specifikt är den valda XRL-metoden ESP-modellen som föreslagits av Lin, Lam och Fern [16] som kan generera kontrastiva förklaringar i termer av varför en handling föredras framför den andra. ESP-modellen utvärderades på två olika RET-optimeringsscenarier. Det första scenariot är formulerat som ett problem med en enstaka agent i en ’enkel’ miljö medan det andra scenariot är formulerat som ett problem med flera agenter i en mer komplex miljö. I båda scenarierna visar resultaten liten eller ingen skillnad i prestanda jämfört med en DQN-algoritm. Slutligen validerades modellens förklaringar genom att jämföra dem med handlingsresultat. Slutsatserna av detta arbete är att ESPmodellen erbjuder förklaringar av dess beteende utan prestandaminskning jämfört med en DQN och de genererade förklaringarna ger värde för att felsöka och förstå det givna problemet.
|
Page generated in 1.5803 seconds