• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 11
  • 11
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Primary Development of a Propane Air Combustor

Bennett, Richard 04 1900 (has links)
<P> The design, and construction of a combustion chamber was undertaken, and the basic considerations, design steps and calculations are described. The preliminary testing consisted of measurements of flame temperature, flame tube wall temperature, and flame tube exit plane temperature. A comparison was made between the experimental and theoretical flame temperatures. The uniformity of air flow in the annulus between the flame tube and outer casing was investigated. Tests were made to ascertain the effect of the gas nozzle position on the condition of the combustion gases. </p> / Thesis / Master of Engineering (MEngr)
2

Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures

Le, Thuy Minh Hai 16 December 2013 (has links)
Knowledge of flammability limits is essential in the prevention of fire and explosion. There are two limits of flammability, upper flammability limit (UFL) and lower flammability limit (LFL), which define the flammable region of a combustible gas/vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures of hydrogen and each hydrocarbon were determined experimentally at room temperature (20ºC) and initial pressures ranging from 1.0 atm to 0.1 atm. The experiments were conducted in a closed cylindrical stainless steel vessel with upward flame propagation. It was found that the flammable region of hydrogen initially widens when the pressure decreases from 1.0 atm to 0.3 atm, then narrows with the further decrease of pressure. In contrast, the flammable regions of the hydrocarbons narrow when the pressure decreases. For hydrogen and the hydrocarbons, pressure has a much greater impact on the UFLs than on the LFLs. For binary mixtures of hydrogen and the hydrocarbons, the flammable regions of all mixtures widen when the fraction of hydrogen in the mixture increases. When the pressure decreases, the flammable regions of all mixtures narrow. The applications of Le Chatelier’s rule and the Calculated Adiabatic Flame Temperature (CAFT) model to the flammability limits of the mixtures were verified. It was found that Le Chatelier’s rule could predict the flammability limits much better than the CAFT model. The adiabatic flame temperatures (AFTs), an important parameter in the risk assessment of fire and explosion, of hydrogen and the hydrocarbons were also calculated. The influence of sub-atmospheric pressures on the AFTs was investigated. A linear relationship between the AFT and the corresponding flammability limit is derived. Furthermore, the consequence of fire relating to hydrogen and the hydrocarbons is discussed based on the AFTs of the chemicals.
3

Development of Color Ratio Thin Filament Pyrometry Approach for Applications in High Speed Flames

Hagmann, Kai Alexander 07 July 2023 (has links)
Thin filament pyrometry is a proven technique used to measure flame temperature by capturing the spectral radiance produced by the immersion of silicon carbide filaments in a hot gas environment. In this study a commercially available CMOS color camera was used, and the spectral response of each color channel was integrated with respect to the assumed graybody radiation spectrum to form a look up table between color ratio and temperature. Interpolated filament temperatures are then corrected for radiation losses via an energy balance to determine the flame temperature. Verification of the technique was performed on the Holthuis and Associates Flat Flame Burner, formerly known as the Mckenna Burner, and the results are directly compared to literature values measured on a similar burner. The results are also supported by radiation corrected measurements taken using a type B thermocouple on the same burner setup. An error propagation analysis was performed to determine which factors contribute the most to the final measurement uncertainty and confidence intervals are calculated for the results. Uncertainty values for a single point measurement were determined to be between ±15 and ±50 K depending on the color ratio and the total uncertainty associated with day-to-day changes in the measurement setup was found to be ±55 K. / Master of Science / Determination of flame temperature is an important aspect of combustion research and is often critical to the evaluation of combustion systems as well as the integration of those systems into more complex devices. In this thesis the technique of thin filament pyrometry was implemented and verified through the use of a well characterized calibration flame. This technique involves placing thin filaments usually made from silicon carbide into the flame and capturing the spectrum of light they emit with a detector. Since the amount of light emitted as well as which wavelengths the light is concentrated in is a strong function of temperature, this methodology may be used to calculate the temperature of the flame. Thin filament pyrometry has the advantage compared to other techniques in that it is extremely cheap to implement and requires no advanced scientific equipment. The SiC filaments have been shown to have a very high resistance to the flame environment and do not face many of the same challenges that can cause problems for other techniques. A statistical analysis of the method implemented in this work was also performed and the expected uncertainty was similar to many of the alternative techniques which necessitate a more complex or expensive setup.
4

Temperatures of Positively and Negatively Stretched Flames

YAMAMOTO, Kazuhiro, ISHIZUKA, Satoru 15 February 2003 (has links)
No description available.
5

NO, Burnout, Flame Temperature, Emissivity, and Radiation Intensity from Oxycombustion Flames

Zeltner, Darrel Patrick 23 May 2012 (has links) (PDF)
This work produced the retrofit of an air-fired, 150 kW reactor for oxy-combustion which was then used in three oxy-combustion studies: strategic oxy-combustion design, oxy-combustion of petroleum coke, and air versus oxy-combustion radiative heat flux measurements. The oxy-combustion retrofit was accomplished using a system of mass flow controllers and automated pressure switches which allowed safe and convenient operation. The system was used successfully in the three studies reported here and was also used in an unrelated study. A study was completed where a novel high oxygen participation burner was investigated for performance while burning coal related to flame stability, NO, and burnout using a burner supplied by Air Liquide. Parameters investigated included oxygen (O2) injection location, burner swirl number and secondary carbon dioxide (CO2) flow rate. The data showed swirl can be used to stabilize the flame while reducing NO and improving burnout. Center O2 injection helped to stabilize the flame but increased NO formation and decreased burnout by reducing particle residence time. Additional CO2 flow lifted the flame and increased NO but was beneficial for burnout. High O2 concentrations up to 100% in the secondary were accomplished without damage to the burner. Petroleum coke was successfully burned using the Air Liquide burner. Swirl of the secondary air and O2 injection into the center tube of the burner were needed to stabilize the flame. Trends in the data similar to those reported for the coal study are apparent. Axial total radiant intensity profiles were obtained for air combustion and three oxy-combustion operating conditions that used hot recycled flue gas in the secondary stream. The oxygen concentration of the oxidizer stream was increased from 25 to 35% O2 by decreasing the flow rate of recycled flue gas. The decrease in secondary flow rate decreased the secondary velocity, overall swirl, and mixing which elongated the flame. Changing from air to neat CO2 as the coal carrier gas also decreased premixing which elongated the flame. Flame elongation caused increased total heat transfer from the flame. The air flame was short and had a higher intensity near the burner, while high O2 concentration conditions produced lower intensities near the burner but higher intensities and temperatures farther downstream. It was shown that oxycombustion can change flame shape, temperature and soot concentration all influencing heat transfer. Differences in gas emission appear negligible in comparison to changes in particle emission.
6

Mass Airflow Sensor and Flame Temperature Sensor for Efficiency Control of Combustion Systems

Shakya, Rikesh January 2015 (has links)
No description available.
7

The Effect of Soot Models in Oxy-Coal Combustion Simulations

Brinkerhoff, Kamron Groves 16 March 2022 (has links)
Soot in coal combustion simulations is often ignored due to its computational complexity, despite significant effects on flame temperature and radiation. In this research, a 40 kW oxy-coal combustion system is modeled using Large Eddy Simulations (LES) and a semi-empirical monodisperse coal soot model. Simulation results are compared to experimental measurements of temperature, species concentrations, and soot concentration. Cases where soot is modeled are compared with cases where soot is neglected to determine the accuracy benefits of modeling soot. The simulations were able to replicate experimental results within an acceptable level of error. Including soot in the simulations did not consistently increase accuracy for the simulation setup and modeling assumptions used in this research.
8

Burnout, NO, Flame Temperature, and Radiant Intensity from Oxygen-Enriched Combustion of a Hardwood Biomass

Thornock, Joshua David 01 December 2013 (has links)
Increasing concern for energy sustainability has created motivation for the combustion of renewable, CO2 neutral fuels. Biomass co-firing with coal provides a means of utilizing the scaled efficiencies of coal with the lower supply availability of biomass. One of the challenges of co-firing is the burnout of biomass particles which are typically larger than coal but must be oxidized in the same residence time. Larger biomass particles also can increase the length of the radiative region and alter heat flux profiles. As a result, oxygen injection is being investigated as a means of improving biomass combustion performance.An Air Liquide designed burner was used to investigate the impact of oxygen enrichment on biomass combustion using two size distributions of ground wood pellets (fine grind 220 µm and medium grind 500 µm mass mean diameter). Flame images were obtained with a calibrated RGB digital camera allowing a calculation of visible radiative heat flux. Ash samples and exhaust NO were collected for a matrix of operating conditions with varying injection strategies. The results showed that oxygen can be both beneficial and detrimental to the flame length depending on the momentum of the oxygen jet. Oxygen injection was found to improve carbon burnout, particularly in the larger wood particles. Low flow rates of oxygen enrichment (2 to 6 kg/hr) also produced a modest increase in NO formation up to 30%. The results showed medium grind ~500 µm mass mean diameter particle combustion could improve LOI from 30% to 15% with an oxygen flow rate of 8 kg/hr. Flame images showed low flow rates of O2 (2 kg/hr) in the center of the burner with the fine particles produced a dual flame, one flame surrounding the center oxygen jet and a second flame between the volatiles and secondary air. The flame surrounding the center oxygen jet produced a very high intensity and temperature (2100 K). This center flame can be used to help stabilize the flame, increase devolatilization rates, and potentially improve the trade-off between NO and burnout.
9

Modelování procesu spalování při využití vzduchu s obsahem kyslíku vyšším než 21 % / Modelling of oxygen-enhanced combustion process

Naď, Martin January 2014 (has links)
The main purpose of the master´s thesis is the experimental study and the mathematical modelling of the combustion process in which the combustion air is enriched with the high-purity oxygen, i.e. the oxygen content is more than 21 %. This combustion technology is called as the oxygen-enhanced combustion (OEC). Since the experimental work required the manipulation with the pure oxygen, a part of the thesis is focused on risks and necessary safety associated therewith. The detailed description of the combustion chamber as well as of the components necessary for the operation of OEC is included. The main part of the thesis is the computational model of the combustion chamber and the simulation of OEC using CFD methods. The numerical results were then compared with the experimental data acquired during the combustion tests, namely the heat flux distribution along the combustion chamber and the distribution of in-flame temperatures in the horizontal symmetry plane of the chamber.
10

Vliv provozních parametrů spalování a konstrukčních parametrů nízkoemisního hořáku na charakteristické parametry spalovacích procesů / The influence of operating parameters and construction parameters of the low-NOx burner on characteristic parameters of combustion processes

Nykodým, Jiří January 2015 (has links)
The main aim of the work was the investigation of the effect of operational parameters of the combustion process (combustion air excess, primary fuel ratio) and burner constructional parameters (the pitch angle of secondary nozzles, tangential orientation of secondary nozzles towards the axis of the burner) on the formation of NOx and CO, flue gas temperature, the shape, dimensions and stability of the flame, in-flame temperatures in the horizontal symmetry plane of the combustion chamber and the amount of heat extracted from the hot combustion gases in the combustion chamber’s shell. Experimental activities were carried out in the laboratory of the Institute of Process and Environmental Engineering, which is focused on burners testing. The combustion tests were performed with the experimental low-NOx type burner, namely the two-gas-staged burner. Mathematical model developed based on the experimental data describes the dependency of NOx on the operating parameters of the combustion process and burner constructional parameters. The model shows that increasing air excess and increasing angle of tangential orientation of the secondary nozzles reduce the formation of NOx. The temperature peaks in the horizontal symmetry plane of the combustion chamber decreases with increasing combustion air excess. The thermal load to the combustion chamber’s wall along the length of the flame was evaluated for selected settings. It was validated that the thermal efficiency of is reduced when higher air excess is used.

Page generated in 0.055 seconds