• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 37
  • 19
  • 11
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 213
  • 42
  • 30
  • 25
  • 24
  • 24
  • 23
  • 18
  • 17
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The European Union policy of zero tolerance : insights from the discovery of CDC Triffid

Dayananda, Buwani 11 July 2011
Flax is one of the major cash crops in Canada. Approximately seventy percent of Canadian flaxseed was exported to European Union (EU) annually until 2009. In 2009, the EU imposed an import ban on Canadian flaxseed due to the adventitious presence of a GM flax variety - CDC Triffid was identified in Canadian flaxseed exported to the EU. The EUs decision to apply zero tolerance on CDC Triffid flax has been based on its interpretation of the precautionary principle. According to the World Trade Organisations Agreement on the Application of Sanitary and Phytosanitary Measures (SPS), however, precautionary measures are subject to a scientific risk assessment. As the EU did not base its zero tolerance for CDC Triffid flax on any scientific risk assessment, the EU is in violation of the SPS Agreement. Moreover, the EU has ignored the available scientific information regarding CDC Triffid flax. The EU did not consider the possibility of following the guidelines given by Codex Alimentarius Commission in the case of CDC Triffid flax. There are non-scientific reasons behind the EUs zero tolerance on CDC Triffid flax and they overweigh the available scientific information. The EU position would be unlikely to be supported if a complaint was brought to the World Trade Organisation Disputes Panel. A partial equilibrium model was used to provide a theoretical background to examine the changes in the flaxseed industry and the linseed oil industry due to the CDC Triffid event. A model of the supply chain of Canadian flaxseed was developed to illustrate the operationalisation of the Protocol developed by the EU and Canada to address the zero tolerance policy. Empirical estimation suggests that the operationalisation of the Protocol incurred additional cost of $7.5 million to the flax seed industry of Canada in 2009/ 2010. Out of that, cost of testing was approximately $1.2 million and cost of segregation was $4.2 million. Estimation of changes in revenue suggests that there was a loss of revenue in flaxseed trade between the EU and Canada in 2009/2010. Imports of Canadian flax by China provided an alternative market, at a considerably lower price than typically realised from the EU market. Interestingly, the EUs zero tolerance policy on CDC Triffid flax has resulted in a larger additional cost on the EU than Canada.
112

The effect of plasma treatment on flax fibres

Oraji, Rahim 02 December 2008
In recent years, interest in using composites with natural fibres as reinforcement and/or filler has increased because of the advantages of natural fibres, such as low density, low cost, high mechanical properties, and biodegradability. Unmodified-hydrophilic natural fibres show poor compatibility with polymer matrix when they are used as reinforcement in polymer composites. <p> Several methods of modifications of natural fibres, such as chemical and plasma modification of natural fibres have been performed to improve the interfacial compatibility of natural fibre and matrix, and also to decrease water absorption of fibres. <p> The purpose of this study was to examine the effect of plasma treatment on Saskatchewan-grown oilseed flax fibre that can be used in biocomposites. For comparison, the fibres have also been chemically modified using sodium hydroxide and silane. A comparison has been made between the results from both cases.<p> In this thesis, both plasma and chemically modified flax fibre are characterized to understand its crystallinity, color changes, mechanical properties, morphological changes, and thermal properties. Techniques such as X-ray diffraction (XRD), color test, tensile test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and soft X - ray spectromicroscopy are used to study the structural changes of flax fibre after physical and chemical modifications. A fitting method with four Gaussian functions was used to determine crystallinity of cellulose. <p> Results showed that the crystallinity of cellulose in modified (physical or chemical) fibres decreased. Chemical treatment did not improve the tensile strength nor the stiffness of the fibres. Morphological studies showed that the fibre surface changes in both treatments were significant, however, the surfaces of flax fibres exposed to the plasma were modified in the near-surface regions. There was no trace of lignin before and after chemical treatment except in the one-hour chemically treated fibres. The color of the fibres became lighter after chemical treatment. Chemical bonding between resin and fibre was observed in the untreated fibres, the one-hour chemically modified fibres and two-hour chemically modified fibres.<p> Results of this research also showed that plasma treatment can be used as a surface modifying method for flax fibres, however there were some restrictions of utilizing the plasma modification method, e.g. sample size and non-uniformity of plasma gas.
113

Development and Characterization of Compression Molded Flax Fiber-Reinforced Biocomposites

Rana, Anup 15 July 2008
Flax fibers are often used as reinforcement for thermoset and thermoplastic to produce biocomposite products. These products exhibit numerous advantages such as good mechanical properties, low density, and biodegradability. Thermoplastics are usually reinforced with flax fiber using injection molding technology and limited research has been done on compression molded thermoplastic biocomposite. Therefore, commercial thermoplastic high density polyethylene (HDPE) and polypropylene (PP) were selected for developing compression molded flax reinforced biocomposites in this research project. The main goal of this research was to develop compression molded biocomposite board using Saskatchewan flax fiber and investigate the effect of flax fiber and processing parameters (molding temperature and molding pressure) on the properties of biocomposite. <p>The fiber was cleaned and chemically treated with alkaline and silane solution that modified the fiber surface. Chemical treatments significantly increased the mechanical properties due to better fiber-polymer interfacial adhesion and also reduced the water absorption characteristics. The silane treatment showed better results than alkaline treatment. Differential scanning calorimetry (DSC) test and scanning electron microscopy (SEM) test were performed to study the thermal and morphological properties of the untreated and chemically treated flax fiber. Flax fiber and thermoplastic resin was mixed using a single-screw extruder to ensure homogenous mixing. HDPE- and PP-based biocomposites were developed through compression molding with three different pretreated flax fiber (untreated, alkaline, silane treated fiber), three levels of fiber content, two levels of molding temperature and two levels of molding pressure. <p>Increase in fiber content increased composite color index, density, water absorption, tensile strength, Youngs modulus, bending strength, and flexural modulus. However for the HDPE composites, tensile and bending strength decreased after 20% flax fiber loading. For the PP composites the, tensile and bending strength decreased after 10% flax fiber loading. Analysis of variance (ANOVA) was performed to quantitatively show the significant effects of the process variables (molding temperature, pressure, and fiber content) and their interactions on the response variables (physical and mechanical properties of biocomposites). The duncan multiple range test (DMRT) was also performed to compare the treatment means. Superposition surface methodology was adapted for both HDPE and PP composites to determine the optimum values of process variables.
114

Weed management in reduced-input no-till flax production

Gillespie, Scott 13 September 2006 (has links)
The goal of the project was to enhance the period of weed growth prior to seeding in order to reduce weed emergence and weed competition after the crop has been planted. Weed growth was stimulated using either light tillage or by applying nitrogen fertilizer early in the spring. Light disturbance significantly increased pre-seed weed emergence while early applied nitrogen did not appear to have an effect. Post seeding weed emergence levels and weed biomass were similar among the light tillage and early nitrogen treatments. Therefore the goal of decreasing weed competition after seeding was not attained. Future research should focus on long-term strategies to reduce weed populations in field rather than seasonal strategies. / October 2006
115

A new composite material consisting of flax fibers, recycled tire rubber and thermoplastic

Fung, Jimmy Chi-Ming 19 November 2009
Canadian grown oilseed flax is known for its oils that are used for industrial products. The flax fiber may also have a use as a potential replacement for synthetic fibers as reinforcement in plastic composites. It can also be utilized as a cost effective and environmentally acceptable supplement in the biodegradable composites. Tire rubber is a complex material which does not decompose naturally. As a result, many researchers have been trying to develop new applications for recycling scrap tires. The conversion of flax straw and scrap tire into a profitable product may benefit the agricultural economy, tire recycling market, and our environment. The main goal of this research was to develop a biocomposite material containing recycled ground tire rubber (GTR), untreated flax fiber, and linear low-density polyethylene (LLDPE).<p> In this study, the new biocomposite material was successfully prepared from flax fiber/shives, GTR, and LLDPE through extrusion and compression molding processes. The composites were compounded through a single-screw extruder. Then the pelletized extrudates were hot pressed into the final biocomposites. The properties of the flax fiber-GTR-LLDPE biocomposites were defined by using tearing, tensile, water absorption, hardness, and differential scanning calorimetry (DSC) tests. The effects of the independent variables (flax fiber content and GTR-LLDPE ratio) on each of the dependent variables (tear strength from tearing test, tensile yield strength and Youngs modulus from tensile test, and weight increase from water absorption test) were modeled. The properties of the composites can be predicted by using the mathematical model with known flax fiber content and GTR-LLDPE ratio.<p> The tensile yield strength and stiffness of the biocomposite were improved with the addition of flax fiber. The optimal composition of the biocomposite material (with strongest tensile yield strength or highest Youngs modulus) was calculated by using the model equations. The maximum yield strength was found to exist for a flax fiber content of 10.7% in weight and GTR-LLDPE ratio of one. The largest Youngs modulus was found for a fiber content of 17.7% by weight and the same GTR-LLDPE ratio. Both of these fiber contents were less than the amount that would give a composite with a 2% weight increase in water absorption.
116

Preparation of Methylcellulose from Annual Plants

Ye, Daiyong 30 September 2005 (has links)
Este trabajo presenta los resultados de la investigación sobre la preparación y caracterización de las metilcelulosas a partir de las plantas anuales.Las pastas del miscanthus, el cardo, y el eucalipto, se prepararon mediante el proceso IRSP (Impregnation Rapid Steam Pulping) y se blanquearon con las secuencias del TCF (Total Chloride Free), que usan peróxido de hidrógeno y hidróxido de sodio (NaOH). Con el aumento de la severidad del proceso de obtención de las pastas, la accesibilidad y la reactividad de las pastas aumentaron mientras que la viscosidad y el número de la kappa disminuyeron. Se desarrolló un nuevo y sencillo método de metilación para preparar las metilcelulosas a partir de la madera y las plantas anuales en el laboratorio. Cada metilcelulosa de las pastas blanqueadas con las secuencias del TCF se sintetizó en una mezcla de isopropanol con metano de yodo a 600C durante 22 horas después la pasta del TCF se mercerizó en una solución del hidróxido de sodio al 40% durante 1 hora. La mercerización y la metilación se repitieron para obtener un grado de sustitución (DS) más alto. Los resultados de la espectroscopía infrarroja de transformada de Fourier (FTIR) (Fourier Transform Infrared Spectroscopy) mostraron que los grupos del OH de la celulosa habían sido sustituidos parcialmente por grupos del metoxil. Los modelos de sustitución supramolecular de las metilcelulosas se determinaron mediante espectroscopía de resonancia magnética nuclear del carbono-13. La viscosidad intrínseca de las metilcelulosas se midió con agua destilada, una solución al 4% de NaOH, o DMSO. Las propiedades reológicas de las metilcelulosas se midieron con DMSO, una solución al 4% de NaOH o agua destilada. Las metilcelulosas sintetizadas tenían unas propiedades similares a las metilcelulosas comerciales. Los volúmenes hidrosolubles y alcalinosolubles de la metilcelulosas se determinaron mediante extracción con disolventes.Las metilcelulosas se prepararon a partir de pastas de lino, yute, cáñamo, sisal, y abacá mediante metilaciones heterogéneas y homogéneas. Estas pastas se blanquearonmediante el proceso ECF (Elemental Chlorine Free). La mutilación inhomogénea de las pastas blanqueadas mediante el proceso ECF se sintetizó en una mezcla de isopropanol con metano de yodo a 600C durante 22 horas después la pasta del ECF se mercerizó durante 1 hora en una solución de NaOH al 50%. La mutilación homogénea de la pasta blanqueada mediante ECF se realizó en DMSO con metano de yodo a 300C durante 48 horas. Para esta metilación homogénea se usó una metilcelulosa con un grado de sustitución más bajo, que se disolvió completamente en DMSO. La espectroscopía infrarroja de transformada de Fourier (FTIR) de las metilcelulosas mostró la existencia de grupos de metoxiles sobre las moléculas de metilcelulosa. Se utilizó la espectroscopia de resonancia magnética nuclear del carbono 13 para medir los grados de sustitución de las metilcelulosas. Los pesos moleculares de las metilcelulosas hidrosolubles se determinaron con la cromotagrafía de exclusión por tamaños (SEC). Las viscosidades intrínsecas se midieron en una solución de NaOH al 4%. Las metilcelulosas preparadas a partir de pastas de elevadas accesibilidades y reactividades tenían las mejores grados de sustitución, pesos moleculares, viscosidades y viscosidades intrínsecas.Se investigaron las accesibilidades y reactividades de las pastas del ECF. Los volúmenes de glucosa y de xilosa de estas pastas se determinaron mediante HPLC (High performance liquid chromatography) después de la hidrólisis. Las accesibilidades de adsorción de yodo de estas pastas eran bajas y sus fragmentos accesibles estaban entre el 1,31% y el 5,16%. En la región amorfa, sus fragmentos accesibles estaban entre el 5% y el 24%. Las imágenes del SEM (Scanning Electrón Microscopy) mostraron que sus fibrillas tenían distintas estructuras morfológicas. Los resultados de la espectroscopía infrarroja de transformada de Fourier (FTIR) mostraron que, después de los pretratamientos, habían disminuido tanto la media de la intensidad de los enlaces de hidrógeno como los índices de cristalinidad relativos. Sus reactividades aumentaron significativamente después de la mercerización preliminar. Las accesibilidades y reactividades de la pasta del abacá se mejoraron con los tratamientos de impregnación con agua, la mercerización a 15 bares de presión, la explosión de vapor y la mercerización preliminar. La desintegración, el incremento de los huecos, el debilitamiento de la intensidad de los enlaces de hidrógeno, la depolimerización, y la decristalización son esenciales para mejorar las accesibilidades y las reactividades, pero el factor decisivo es la especie de la planta.Hemos estudiado los factores que influyen en el peso molecular (Mw) de las metilcelulosas hidrosolubles preparadas a partir de plantas anuales. El tiempo y la temperatura de impregnación y las condiciones de cocción influyeron de manera diferente en el peso molecular (Mw) de metilcelulosas preparadas a partir de los cardos recogidos en primavera y en verano, el miscanthus y el eucalipto. Se compararon los efectos de los pretratamientos (la impregnación con agua, la mercerización preliminar, la mercerización con presión y la explosión de vapor) en la pasta del abacá. Cuando se pretrató la pasta del abacá, su metilcelulosa hidrosoluble consiguió un peso molecular más alto. De entre los pretratramientos analizados, la explosión de vapor resultó el más adecuado. Para conseguir metilcelulosas con un peso molecular más alto deben perfeccionarse las condiciones de la preparación de las pastas blanqueadas mediante ECF. La especie de las plantas es el factor decisivo para conseguir el peso molecular más alto de las metilcelulosas y para seleccionar los pretratamientos más adecuados.Los parámetros del proceso de obtención de pastas, las condiciones de la metilación, las especies de las plantas, los pretratamientos, y la estructura morfológicas de las pastas influyó en los grados de sustitución de las metilcelulosas preparadas a partir de plantas anuales. Una severidad de impregnación más alta, una temperatura del proceso de obtención de pastas más alta y un incremento del tiempo del mismo proceso consiguieron grados de sustitución más altos. Un aumento de reactivos de la metilación causó un aumento de grado de sustitución. Las pastas obtenidas de distintas especies produjeron grados de sustitución diferentes, trabajando con las mismas condiciones de metilación. Los pretratamientos aumentaron el grado de sustitución de las metilcelulosas.Esta investigación contribuye a encontrar las condiciones apropiadas para metilcelulosas diseñadas a medida, sintetizadas a partir de plantas anuales. Esta investigación demuestra que estas plantas tienen la capacidad de ser preparadas para conseguir metilcelulosas de alta calidad y de alto valor aptas para distintas aplicaciones, como la industria alimentaria, la de la construcción o la farmacéutica. La industria puede utilizar estas plantas anuales de crecimiento rápido para producir metilcelulosas, con lo que, además, se evitará el uso de madera.Palabras clave: abacá, accessibilidad, blanqueo mediante TCF, cáñamo, cardo, eucalipto, grado de sustitución, lino, metilación, metilcelulosa, miscanthus, peso molecular, plantas anuales, proceso de obtención de pasta IRSP, sisal, yute. / Preparation and characterization of methylcelluloses from some annual plantswere investigated.Miscanthus, cardoon, and eucalyptus pulps were produced by Impregnation Rapid Steam Pulping (IRSP) process and bleached by Total Chloride Free (TCF) sequences using hydrogen peroxide and sodium hydroxide. With an increase of pulping severities, accessibilities and reactivities of bleached pulps increased while viscosities and kappa numbers decreased. A novel facile methylation was developed in order to prepare methylcelluloses from wood and annual plants. Each methylcellulose of TCF bleached pulps was synthesized in isopropanol slurry with iodomethane at 600C for 22 hours after the TCF bleached pulp was mercerized in 40% NaOH solution for 1 hour. The mercerization and methylation were repeated in order to obtain a higher degree of substitution (DS). Fourier Transform Infrared (FTIR) spectra showed OH groups of cellulose were partially substituted by methoxyl groups. Supramolecular substitution patterns of methylcelluloses were determined by 13C nuclear magnetic resonance (NMR) spectroscopy. Intrinsic viscosities of methylcelluloses were measured in distilled water, 4% NaOH solution, or dimethyl sulphoxide (DMSO). Rheological properties of methylcelluloses were measured in DMSO, 4% NaOH solution or distilled water, in which the synthesized methylcelluloses had similar properties as commercial methylcelluloses. Watersoluble and alkali-soluble contents of methylcelluloses were determined by solventextraction.We used iodomethane to synthesize methylcelluloses from Elemental Chloride Free (ECF) bleached abaca, hemp, flax, jute, and sisal pulps via heterogeneous and homogeneous methylations. The heterogeneous methylation was carried out in isopropanol with iodomethane at 600C for 22h after a ECF bleached pulp was mercerized in excessive 50% NaOH solution for one hour at ambient temperature. The homogeneous methylation was carried out in dimethyl sulfoxide with iodomethane at 300C for 48h using a methylcellulose of low degree of substitution. Fourier Transform Infrared (FTIR) spectra of the synthesized methylcelluloses showed the existence of methoxyl groups on methylcellulose molecules. The degrees of substitution of the synthesized methylcelluloses were measured by 13C Nuclear Magnetic Resonance (NMR) spectroscopy. The molecular weights of the waterVI soluble methylcelluloses were determined by Size Exclusion Chromatography (SEC). Intrinsic viscosities of the synthesized methylcelluloses were measured in 4% NaOH solution. Methylcelluloses with better properties, such as greater degrees of substitution, molecular weights, viscosities, and intrinsic viscosities, were prepared from the pulps with higher accessibilities and reactivities. The factors influencing the preparation of methylcelluloses from these pulps were discussed.Pretreatments (water-soaking, pre-mercerization, mercerization under a pressure of 15 bars, and steam explosion) were used to improve the accessibilities and reactivities of celluloses of bleached flax, hemp, sisal, abaca, and jute pulps for the synthesis of methylcellulose. Glucose and xylose contents of these pulps were determined by High Performance Liquid Chromatograph (HPLC) after hydrolysis. Degrees of crystallinity of these pulps were determined by X-ray Diffraction (XRD) spectra. Figures of Scanning Electron Microscope (SEM) showed that their fibrils had different morphological structures. The iodine adsorption accessibilities of these pulps were low and accessible fractions ranged from 1.3% to 5.2%. Accessible fractions in amorphous cellulose were calculated in the 5% to 18% range. The accessibilities of these pulps were hemp pulp > flax pulp > sisal pulp > jute pulp > abaca pulp. Fourier Transform Infrared (FTIR) spectra showed that mean hydrogen bond strengths were weakened and relative crystallinity indexes were decreased by pretreatments. The accessibility and reactivity of the abaca pulp were improved by water soaking, mercerization under 15 bars pressure, steam explosion and preliminary mercerization, of which steam explosion and pre-mercerization were thebest treatments. Species was the main factor for the accessibility and reactivity.We studied the factors that influenced the molecular weights (Mw) of watersolublemethylcelluloses prepared from annual plants and juvenile eucalyptus. Miscanthus and cardoon stalks, and bleached pulps of abaca, jute, sisal, hemp, and flax were used as the annual plant materials. A higher concentration of NaOH solution during the impregnation led to a spring cardoon methylcellulose having a lower molecular weight. As the impregnation times increased, so did the molecular weights of the water-soluble methylcelluloses of spring cardoon. The impregnation conditions had less influence on the methylcelluloses of summer cardoon than on the methylcelluloses of spring cardoon. As the cooking times increased, so did the molecular weights of miscanthus methylcelluloses. A lower pulping severity increased the molecular weight of eucalyptus methylcellulose. The preliminary treatments (water soaking, pre-mercerization, mercerization under pressure andsteam explosion) improved the molecular weights of water-soluble abaca methylcelluloses. The steam explosion method was the best of the preliminary treatments for the abaca pulp. Different species led to different molecular weights for methylcelluloses synthesized from ECF bleached pulps, and these were further improved by preliminary mercerization. The molecular weight of &#61537;-cellulose methylcellulose changed as the ratio of the methylation reagent was varied. In order to synthesize an optimum Mw of methylcellulose, the different raw materials can be chosen, the pulping parameters adjusted (including impregnation and cooking), the cellulose pretreated, and the methylcellulose conditions changed. The plant species is the decisive factor for the Mw of methylcellulose.The pulping parameters, the methylation conditions, the species, the pretreatments, and the morphological structures of pulps influenced the degrees of substitution of the methylcelluloses prepared from the annual plants. A higher impregnation severity, a higher pulping temperature, and a longer pulping time caused a higher degree of substitution. An increase of methylation reagents led to an increase of degree of substitution. Methylcelluloses of different degrees of substitution were synthesized from the pulps of different species when a same methylation condition was used. The pretreatments increased the degrees of substitution of methylcelluloses.This investigation contributes to find appropriate conditions for the production of methylcellulose from annual plants. The present investigation demonstrates these annual plants have the capacities to produce upgraded and high quality methylcelluloses for varied applications, such as additives of foods, construction, pharmaceutics, polymerization, paints, and detergents etc. The industry can utilize these annual fast-growth plants to produce methylcelluloses. Therefore, a lot of wood will be saved.Keywords: abaca, accessibility, annual plants, cardoon, degree of substitution, eucalyptus, flax, hemp, IRSP pulping, jute, methylation, methylcellulose, miscanthus, molecular weight, sisal, steam explosion, TCF bleaching.
117

Elucidating the genetic basis of bast fibre production in flax (Linum usitatissimum L.)

2012 March 1900 (has links)
Flax is often considered a total utilization crop because of the potential to extract value from two distinct products - seeds and stem fibres. However, very little genetic information is available on flax fibre genetics in comparison to oil improvement studies. In order to gain a detailed understanding of genetic control of the fibre concentration and search for the possibilities of developing dual purpose flax lines using both seed oil and stem fibre, the following studies were initiated: The first study evaluated the fibre and oil-related traits in a recombinant inbred population derived from a cross between a fibre flax variety Viking and an oilseed flax genotype E1747 over multiple locations under western Canadian field conditions. The study confirmed the presence of a significant genotype by environment interaction (p < 0.01) for fibre concentration indicating selection for this trait will be challenging. However, a lack of significant correlation between fibre and oilseed characteristics in field trials was encouraging and strengthened the hypothesis that breeding dual purpose flax types for western Canada is possible. The study also identified potential recombinant inbred lines (RILs) with enhanced fibre concentration as well as oil characteristics for use in future breeding endeavors. The second study established an anatomical basis for further research into flax fibre improvement by studying differences between the stem anatomy of 14 diverse flax genotypes in the field and under controlled environments such as a growth chamber. The results from the study supported the use of controlled environments for the purpose of quick screening of high fibre containing genotypes, especially at the green capsule stage of plant growth. The results also indicated that it was possible to select high fibre oilseed flax lines based on anatomical markers such as average area of single fibre cells, total fibre area and fibre to stem area ratio. In the third study, 17 simple sequence repeat (SSR) and 2 cleaved amplified polymorphic sequences (CAPS) molecular markers were used to assess the extent of genetic variability in the Viking × E1747 RIL population. CAPS markers LuFAD3A and LuFAD3B had the highest marker trait association (p < 0.0001) with linoleic and linolenic acid concentration. SSR markers such as CV8824, 5B6 and LU32 were found to be associated with plant height, oil concentration and protein concentration respectively using single marker analysis and step wise regression analysis. The molecular study confirmed the importance of Viking × E1747 mapping population in identifying genes/ markers related to both fibre and oilseed related traits in flax. In the fourth study, global transcript profiling using cDNA - based microarrays was performed to identify differentially expressed fibre related transcripts between Viking and E1747. The largest group of transcripts (7 %) found more abundant in Viking relative to E1747 fell under the functional group of cell wall development using gene ontology (GO) analysis. Transcripts such as callose synthases, expansins, cytochrome P450, fasciclin-like arabino galactan proteins and β-galactosidases were highly abundant in Viking relative to E1747. The transcripts more abundant in E1747 relative to Viking were UDP – glucose glucosyltransferase, auxin repressed protein, ubiquitin conjugating enzyme, peroxidases and lipid transfer proteins. Quantitative real time PCR results confirmed the suitability of the microarray platform to accurately discriminate transcript profiles between the two diverse flax types. In conclusion, this research has provided a number of new insights into flax fibre genetics. This information lays the foundation for further genetic studies on flax bast fibres and will complement research on developing dual purpose flax varieties.
118

Effects of fiber content and extrusion parameters on the properties of flax fiber - polyethylene composites

Siaotong, Bruno Antonio Consuegra 27 April 2006 (has links)
Extrusion compounding addresses such problems as the non-homogeneity of the mixture and separation of fiber from the polymer during rotational molding, which consequently affect the mechanical and physical properties of the resulting composites. <p>Using triethoxyvinylsilane as chemical pre-treatment on flax fibers and linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) as polymer matrices, this study focused on the effects of flax fiber content (0%, 12.5% or 25%) and extrusion parameters such as barrel zone temperatures (75-110-120-130-140°C or 75-120-130-140-150°C) and screw speed (110 or 150 rpm) on the extrudate and composite properties (extrudate color, extrudate density, extrudate melt flow index, extrudate morphology, composite color, composite density, composite morphology, composite tensile strength and composite water absorption). <p>A mixture of chemically pre-treated flax fibers and powdered polyethylene matrices underwent extrusion compounding using a twin-screw extruder. The extrudates were then pelletized, ground, rotationally molded and cut into test specimens (composites). The mechanical and physical properties of both the extrudates and the composites from different treatments were then measured and compared. <p>Using multiple linear regression, models were generated to show quantitatively the significant effects of the process variables on the response variables. Finally, using response surface methodology and superposition surface methodology on the preceding data, the following optimum values for fiber content and extrusion parameters were determined: for LLDPE composites, fiber content = 6.25%, temperatures = 75-117.3-127.3-137.3-147.3°C, screw speed = 117.5 rpm; for HDPE composites, fiber content = 5.02%, temperatures = 75-118.1-128.1-138.1-148.1°C, screw speed = 125.56 rpm.
119

The effect of plasma treatment on flax fibres

Oraji, Rahim 02 December 2008 (has links)
In recent years, interest in using composites with natural fibres as reinforcement and/or filler has increased because of the advantages of natural fibres, such as low density, low cost, high mechanical properties, and biodegradability. Unmodified-hydrophilic natural fibres show poor compatibility with polymer matrix when they are used as reinforcement in polymer composites. <p> Several methods of modifications of natural fibres, such as chemical and plasma modification of natural fibres have been performed to improve the interfacial compatibility of natural fibre and matrix, and also to decrease water absorption of fibres. <p> The purpose of this study was to examine the effect of plasma treatment on Saskatchewan-grown oilseed flax fibre that can be used in biocomposites. For comparison, the fibres have also been chemically modified using sodium hydroxide and silane. A comparison has been made between the results from both cases.<p> In this thesis, both plasma and chemically modified flax fibre are characterized to understand its crystallinity, color changes, mechanical properties, morphological changes, and thermal properties. Techniques such as X-ray diffraction (XRD), color test, tensile test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and soft X - ray spectromicroscopy are used to study the structural changes of flax fibre after physical and chemical modifications. A fitting method with four Gaussian functions was used to determine crystallinity of cellulose. <p> Results showed that the crystallinity of cellulose in modified (physical or chemical) fibres decreased. Chemical treatment did not improve the tensile strength nor the stiffness of the fibres. Morphological studies showed that the fibre surface changes in both treatments were significant, however, the surfaces of flax fibres exposed to the plasma were modified in the near-surface regions. There was no trace of lignin before and after chemical treatment except in the one-hour chemically treated fibres. The color of the fibres became lighter after chemical treatment. Chemical bonding between resin and fibre was observed in the untreated fibres, the one-hour chemically modified fibres and two-hour chemically modified fibres.<p> Results of this research also showed that plasma treatment can be used as a surface modifying method for flax fibres, however there were some restrictions of utilizing the plasma modification method, e.g. sample size and non-uniformity of plasma gas.
120

Development and Characterization of Compression Molded Flax Fiber-Reinforced Biocomposites

Rana, Anup 15 July 2008 (has links)
Flax fibers are often used as reinforcement for thermoset and thermoplastic to produce biocomposite products. These products exhibit numerous advantages such as good mechanical properties, low density, and biodegradability. Thermoplastics are usually reinforced with flax fiber using injection molding technology and limited research has been done on compression molded thermoplastic biocomposite. Therefore, commercial thermoplastic high density polyethylene (HDPE) and polypropylene (PP) were selected for developing compression molded flax reinforced biocomposites in this research project. The main goal of this research was to develop compression molded biocomposite board using Saskatchewan flax fiber and investigate the effect of flax fiber and processing parameters (molding temperature and molding pressure) on the properties of biocomposite. <p>The fiber was cleaned and chemically treated with alkaline and silane solution that modified the fiber surface. Chemical treatments significantly increased the mechanical properties due to better fiber-polymer interfacial adhesion and also reduced the water absorption characteristics. The silane treatment showed better results than alkaline treatment. Differential scanning calorimetry (DSC) test and scanning electron microscopy (SEM) test were performed to study the thermal and morphological properties of the untreated and chemically treated flax fiber. Flax fiber and thermoplastic resin was mixed using a single-screw extruder to ensure homogenous mixing. HDPE- and PP-based biocomposites were developed through compression molding with three different pretreated flax fiber (untreated, alkaline, silane treated fiber), three levels of fiber content, two levels of molding temperature and two levels of molding pressure. <p>Increase in fiber content increased composite color index, density, water absorption, tensile strength, Youngs modulus, bending strength, and flexural modulus. However for the HDPE composites, tensile and bending strength decreased after 20% flax fiber loading. For the PP composites the, tensile and bending strength decreased after 10% flax fiber loading. Analysis of variance (ANOVA) was performed to quantitatively show the significant effects of the process variables (molding temperature, pressure, and fiber content) and their interactions on the response variables (physical and mechanical properties of biocomposites). The duncan multiple range test (DMRT) was also performed to compare the treatment means. Superposition surface methodology was adapted for both HDPE and PP composites to determine the optimum values of process variables.

Page generated in 0.0314 seconds