Spelling suggestions: "subject:"flexible bodies"" "subject:"mlexible bodies""
1 |
Material Analysis of the Intervertebral Disc and the use of Flexible Bodies in Disc ModelingHoschouer, Clifford Jason 15 December 2011 (has links)
No description available.
|
2 |
Adaptive strategies for controls of flexible arms a thesis presented to the academic faculty /Yuan, Bau-San, January 1900 (has links)
Thesis (Ph. D.)--Georgia Institute of Technology, 1989. / Shipping list no.: 90-0587-M. "April, 1989." "NASA grant NAG1-623"--P. [iii]. Includes bibliographical references (p. 162-166). Also available via Internet from the NASA Technical Report Server web site. Address as of 4/26/06: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900004467%5F1990004467.pdf; current access available via PURL.
|
3 |
Modelling and simulation of Research Concept Vehicle using MBD-FEM approach / MBD-FEM-ansats för modellering och simulering av ”Research Concept Vehicle”Mallikarjuna Rao, Tarun January 2015 (has links)
This work highlights the design process to build a MBD (Multi-Body Dynamics) model with flexible parts for a RCV (Research Concept Vehicle). Full vehicle dynamic simulations of the RCV model with flexible parts were performed for different load cases and the results were compared with that of a MBD model with rigid body components. In addition, FE modelling of the RCV body parts, selection of attachment nodes, generation and verification of Modal Neutral Files (MNFs) are discussed. RCV is a concept vehicle developed at KTH Royal Institute of technology as a research platform to implement, validate and demonstrate results of various research projects. The vehicle consists of body, suspension and tire subsystems which were designed and developed as individual projects. The body subsystem comprises of rollcage, subframe and a composite baseplate. In this project, a MBD model of the RCV was developed in ADAMS/CAR to measure the forces acting at the interface of these body components and also to consider the suspension forces acting on the individual front and rear subframe parts. Finite element (FE) models were incorporated to consider the flexibility of the body components. The RCV is a vehicle constantly evolving with addition of new components to implement and test various research results. To study the application of this method, two Models of the RCV with design modifications were developed and studied. A model of the RCV without rollcage and a model with a rigid link connecting the body components were built and the results of dynamic simulations were compared with that of the existing RCV design. When flexibility of the baseplate was considered in the models, an overall change in dynamics of the body components was observed. Further, observing the results from models with design modifications, it was evident that this method can be used to study the effect of these modifications on the dynamic behaviour of the vehicle. / Det här arbetet belyser konstruktionsprocessen för att bygga en MBD-modell (Multi-Body Dynamics) med flexibla komponenter av konceptfordonet RCV (Research Concept Vehicle). Fullständiga fordonsdynamiska simuleringar med flexibla komponenter utfördes för olika lastfall och resultaten jämfördes med en MBD-modell med stela komponenter. Dessutom diskuteras FE modellering av RCVs olika delsystem, val av kopplingsnoder, generering och verifiering av ”Modal Neutral Files” (MNFs). RCV är ett konceptfordon som utvecklats vid Kungliga Tekniska Högskolan, KTH, som en forskningsplattform för att implementera, validera och demonstrera resultaten av olika forskningsprojekt. Fordonet består av delsystemen; chassi, hjulupphängning, och däck, vilka har utvecklats tidigare i separata projekt. Chassit består i sin tur av delsystemen; ”rollcage”, ”subframe” och ”baseplate”. I detta projekt har en MBD-modell av RCV utvecklats i ADAMS/CAR för att simulera olika körfall och beräkna de krafter som verkar mellan dessa delsystem och att också studera skillnaden i belastning av främre resp. bakre ”subframe”. FE modeller importeradesäven till modellen för att studera effekten av elasticiteten hos komponenterna på fordonets beteende.RVC är ett fordon som konstant utvecklas med tillägg av nya komponenter för att implementera och testa olika forskningsresultat. För att studera tillämpningen av denna metod skapades två modeller av RCV med olika konstruktiva förändringar vilkas inverkan på fordonet studerades. En modell av RCV utan ”rollcage” och en modell med styv länk som förbinder olika delar av chassit skapades och resultaten av dynamiska simuleringar jämfördes med simuleringsresultat för den befintliga RCV-designen. När flexibiliteten hos basplattan beaktades i modellerna observerades förändringar i dynamiken hos chassit vad gäller vertikala förskjutningar och vinkelförskjutningar. Utifrån dessa simuleringar kan vi dra slutsatsen att den utvecklade metoden är användbar för att studera effekter av konstruktionsförändringar på det dynamiska beteendet hos fordonet.
|
4 |
Simulační posouzení možností tlumení osy X těžkého obráběcího stroje / Simulation Assessment of X Axis Damping Possibilities of Heavy Machine ToolŠtetina, Jakub January 2014 (has links)
This master's thesis deals with the simulation assessment of axis X damping possibilities of Heavy Machine Tools. CAD model has been provided by company TOSHULIN a.s. In the thesis, there is described modelling of axis X as multi body system consisting of rigid and flexible bodies. The main goal is to create simplified model and get the information for strategic decision of manufacturer about damping possibilities of axis X. For the solution has been used several software products: SolidWorks 2013 - for simplifying the CAD models, Ansys 14.5. for modelling od flexible bodies, MSC.Adams for modelling multi body systems and Matlab 2012 for data processing and optimization.
|
5 |
Hybrid modular models for the dynamic study of high-speed thin -rimmed/-webbed gears / Modèles modulaires hybrides pour l'étude dynamique à haute-vitesse des engrenages à voile-mincesGuilbert, Bérengère 08 December 2017 (has links)
Ces travaux de thèse ont été réalisés grâce à une collaboration entre Safran Helicopter Engines (anciennement Turbomeca) et le Laboratoire de Mécanique des Contacts et des Structures (LaMCoS) de l’INSA de Lyon (UMR CNRS 5259). Les boîtes de transmission par engrenages des moteurs d’hélicoptères convoient la puissance mécanique du turbomoteur aux accessoires (pompes, démarreur) et au rotor. Leur conception dépend des nécessités des équipements embarqués, en particulier l’allègement pour réduire la consommation en carburant. Les engrenages haute vitesse de la transmission sont allégés grâce à des enlèvements de matière dans les corps sous la denture, les voiles-minces. Un modèle dynamique d’engrenages a été développé pendant ce projet de recherche. Son approche modulaire permet l’inclusion conjointe des sollicitations dues aux vibrations de l’engrenage et de la nouvelle flexibilité des voiles-minces. Il dérive d’un modèle à paramètres concentrés, comprenant des arbres en poutre, des paliers et carters sous forme de raideurs additionnelles et un élément d’engrenage rigide inclus par son nœud central. Hypothèse est faite que tous les contacts sont situés sur les lignes de contact du plan d’action. Ces lignes sont discrétisées selon des tranches-minces dans les dents et la déviation normale des cellules est recalculée à chaque pas de temps selon la déflexion de la denture. Le nouveau modèle remplace l’engrenage rigide par une modélisation EF du pignon et/ou de la roue condensée sur les nœuds de jante. Une interface lie les raideurs du plan d’action discrétisé aux éléments finis du corps d’engrenage. L’élément prend donc en compte à la fois les sollicitations de l’engrenage et le comportement statique et modal des corps flexibles en dynamique. Des comparaisons sont faites avec des données numériques et expérimentales. Elles attestent de la capacité du nouveau modèle à prédire le comportement dynamique des engrenages flexibles à hauts régimes de rotation. Ces résultats intègrent entre autres des données locales et globales en dynamique. Finalement, le modèle est utilisé sur les deux cas académiques validés pour visualiser les effets des corps flexibles plus en détails. Un premier focus sera fait sur la déflexion statique due aux charges d’engrènement et sur l’optimisation sur le fonctionnement dynamique possible. Puis, les impacts des sollicitations de l’engrènement sur le voile en rotation seront étudiés. Enfin, le pignon et la roue seront affinés, afin de visualiser l’optimisation massique possible et son impact sur la dynamique de l’engrenage. / The research work presented in this manuscript was conducted in the Contact and Structural Mechanics Laboratory (LaMCoS) at INSA Lyon, in partnership with Safran Helicopter Engines (formerly-Turbomeca). In helicopters, the power from the turboshaft is transmitted to the rotor and the various accessories (pumps, starters etc…) via transmission gearboxes. In the context of high-speed, light-weight aeronautical applications, mechanical parts such as gears have to meet somehow contradictory design requirements in terms of reliability and mass reduction thus justifying precise dynamic simulations. The present work focuses on the definition of modular gear dynamic models, capable of integrating both the local phenomena associated with the instant contact conditions between the tooth flanks and the more global aspects related to shafts, bearings and particularly the contributions of light thin-rimmed /-webbed gear bodies. The proposed models rely on combinations of condensed sub-structures, lumped parameter and beam elements to simulate a pinion-gear pair, shafts, bearings and housing. Mesh elasticity is time-varying, possibly non-linear and is accounted for by Winkler foundations derived from a classic thin-slice model. The contact lines in the base plane are therefore discretised into elemental segments which are all attributed a mesh stiffness function and a normal deviation which are updated depending on the pinion and gear angular positions. The main originality in this PhD consists in inserting condensed finite elements models to simulate flexible gear bodies while keeping the simple and faster rigid-body approach for solid gears. To this end, a specific interface has been developed to connect the discretised tooth contact lines to the continuous finite element gear body models and avoid numerical spikes in the tooth load distributions for example. A number of comparisons with numerical and experimental results show that the proposed modelling is sound and can capture most of the quasi-static and dynamic behaviour of single stage reduction units with thin-webbed gears and/or pinions. The model is then applied to the analysis of academic and industrial gears with the objective of analysing the contributions of thin, flexible bodies. Results are presented which highlight the role of centrifugal effects and tooth shape modifications at high speeds. Finally, the possibility to further improve gear web design with regard to mass reduction is investigated and commented upon.
|
Page generated in 0.1171 seconds