• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 19
  • 14
  • 13
  • 12
  • 11
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flip chip and lid attachment assembly process development

Ding, Fei, Johnson, Robert Wayne, January 2006 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2006. / Abstract. Includes bibliographic references (p.99-110).
2

In-process stress analysis of flip chip assembly and reliability assessment during environmental and power cycling tests

Zhang, Jian, January 2003 (has links) (PDF)
Thesis (Ph. D.)--School of Mechanical Engineering, Georgia Institute of Technology, 2004. Directed by Daniel F. Baldwin. / Vita. Includes bibliographical references (leaves 202-210).
3

Fabrication and assembly of ultra thin flexible active printed circuits

Zhang, Tan, January 2006 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Vita. Includes bibliographical references (ℓ. 79-83).
4

Process development of double bump flip chip with enhanced reliability and finite element analysis

Yan, Wei, Johnson, R. Wayne, January 2005 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
5

Evaluation, optimization, and reliability of no-flow underfill process

Colella, Michael. January 2004 (has links) (PDF)
Thesis (M.S.)--Mechanical Engineering, Georgia Institute of Technology, 2004. / Daniel Baldwin, Committee Chair; Suresh Sitaraman, Committee Member; Steven Danyluk, Committee Member. Includes bibliographical references (leaves 238-241).
6

Study on the curing process of no-flow and wafer level underfill for flip-chip applications

Zhang, Zhuqing, January 2003 (has links) (PDF)
Thesis (Ph. D.)--School of Materials Science and Engineering, Georgia Institute of Technology, 2004. Directed by C.P. Wong. / Includes bibliographical references (leaves 275-289).
7

Fundamental study of underfill void formation in flip chip assembly

Lee, Sangil. January 2009 (has links)
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Baldwin, Daniel; Committee Member: Colton, Jonathan; Committee Member: Ghiaasiaan, Mostafa; Committee Member: Moon, Jack; Committee Member: Tummala, Rao. Part of the SMARTech Electronic Thesis and Dissertation Collection.
8

Investigation of electromigration reliability of solder joint in flip-chip packages

Ding, Min, 1975- 28 August 2008 (has links)
Electromigration related damage in solder bumps is one of the emerging issues resulting from the fast scaling-down of features in semiconductor packages. Although the electromigration phenomenon has been intensively studied on silicon level interconnect lines since the late 1960s, it is far less understood in solder bumps. Electromigration in solder joints can be quite different from that of the interconnects due to the differences in material systems and structures. This study addressed the solder joint electromigration and contained three major objectives. The first objective of this study was to set up an effective experimental technique to examine the damage development and determine the time-to-failure in the electromigration tests. The structure and dimension of the flip chip solder bump is very different from that of the chip level interconnect. Consequently, the traditional failure tracking method based on 2-point resistance monitoring is no longer able to provide real-time damage evolution information. A test system based on a Wheat stone bridge circuit was introduced. The technique showed the capability of detecting milliohm resistance changes and could track the interfacial crack growth induced by electromigration damage. Other aspects of the experiment, such as temperature and current distribution inside the test structure, were also examined so that proper lifetime could be extrapolated from testing condition to normal working condition. The second objective was to examine the failure mechanisms in solder bump electromigration which could be significantly different between various solder bump systems. Pb-free and high-Pb solder alloys with different UBM configurations were studied. The research results showed that the most active region during solder bump electromigration was the under bump metallization (UBM) layer and its interface with the solder due to the intermetallic compound formation and UBM dissolution. Therefore, the electromigration-induced damage occurred mostly in this region. The failure mechanisms were found to be highly dependent on the material system as well as the temperature. The third objective was to determine the statistical lifetime of the flip chip solder bumps under electromigration. Lognormal distributions were used to fit the lifetime. The temperature and current dependence was assumed to follow Black's equation and the activation energies was calculated from that. The results showed that the traditional Black's equation might not be applicable to solder bump electromigration due to the different failure mechanism at different temperatures. Special attention is needed to set up design rules for maximum operating current and temperature for a solder bump structure when extrapolating data from high temperature. / text
9

Characterization of die stresses in large area array flip chip packages

Roberts, Jordan Christopher, Jaeger, Richard C., Suhling, J. C. January 2008 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references (p. 134-144).
10

Investigation of electromigration reliability of solder joint in flip-chip packages

Ding, Min, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.

Page generated in 0.0803 seconds