• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 19
  • 14
  • 13
  • 12
  • 11
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Processing of no-flow fluxing uderfills for flip chip assembly

Lazarakis, Theodoros L. 12 1900 (has links)
No description available.
22

Fundamental study of underfill void formation in flip chip assembly

Lee, Sangil 06 July 2009 (has links)
Flip Chip in Package (FCIP) has been developed to achieve the assembly process with area array interconnects. Particularly, a high I/O count coupled with finer pitch area array interconnects structured FCIP can be achieved using no-flow underfill assembly process. Using the assembly process, a high, stable yield assembly process recently reported with eutectic lead-tin solder interconnections, 150 µm pitch, and I/O counts in excess of 3000. The assembly process reported created a large number of voids among solder interconnects in FCIP. The voids formed among solder interconnections can propagate, grow, and produce defects such as solder joint cracking and solder bridging. Moreover, these voids can severely reduce reliability performance. Indeed, many studies were conducted to examine the void formation in FCIP. Based on the studies, flip chip geometric design, process conditions, and material formulation have been considered as the potential causes of void formation. However, the present research won't be able to identify the mechanism of void formation, causing a lot of voids in assembly process without consideration of chemical reaction in the assembly process with a fine-pitch, high I/O density FCIP. Therefore, this research will present process technology necessary to achieve high yields in FCIP assemblies using no-flow underfills and investigate the underlying problem of underfill void formation in these assemblies. The plausible causes of void formation will be investigated using experimental techniques. The techniques will identify the primary source of the void formation. Besides, theoretical models will be established to predict the number of voids and to explain the growth behavior of voids in the FCIP. The established theoretical models will be verified by experiments. These models will validate with respect to the relationship between process parameters to achieve a high yield and to minimize voids in FCIP assemblies using no-flow underfill materials regarding process as well as material stand points. Eventually, this research provides design guideline achieving a high, stable yield and void-free assembly process.
23

Modeling and experiments of underfill flow in a large die with a non-uniform bump pattern

Zheng, Leo Young. January 2008 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2008. / Includes bibliographical references.
24

Flip chip and heat spreader attachment development

Li, Yuquan. Johnson, Robert Wayne, January 2009 (has links)
Thesis (Ph. D.)--Auburn University. / Abstract. Includes bibliographical references (p. 91-100).
25

Interfacial reliability of Pb-free flip-chip BGA package

Tang, Zhenming. January 2008 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2008. / Includes bibliographical references.
26

Assembly process development, reliability and numerical assessment of copper column flexible flip chip technology

Lin, Ta-Hsuan. January 2008 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Systems Science and Industrial Engineering, Thomas J. Watson School of Engineering and Applied Science, 2008. / Includes bibliographical references.
27

Strain measurement of flip-chip solder bumps using digital image correlation with optical microscopy

Lee, Dong Gun. January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009. / Includes bibliographical references.
28

Développement de la technique de sérigraphie pour la formation de billes de connexions inférieures a 100µm pour l'assemblage 3D : optimisation et étude de fiabilité / Stencil printing of Pb-free solder paste for formation of bumps smaller than 100μm : optimization and reliability study

Jemai, Norchene 18 February 2010 (has links)
L’assemblage et le conditionnement en électronique représentent un enjeu de création de nouveaux systèmes électroniques hybrides rassemblant sur un même substrat des éléments électroniques, optiques, mécaniques… La technologie Flip-chip , introduite par IBM et baptisée C4 (Control Collapse Chip Connection), garantit une plus grande densité d’intégration tout en gardant les mêmes dimensions de puce. Au coeur de cette technologie, le « Bumping » est un procédé qui consiste en l’introduction d’une microbille conductrice entre deux plots de connexion des puces afin de réaliser une liaison électrique et mécanique avec le niveau de packaging suivant. La technique de dépôt par sérigraphie de pâte à braser est récemment devenue pratique en raison de son adaptation aux alliages sans plomb. Cette méthode présente l'avantage d'un faible coût et d'une possible production à grande échelle. Nous avons donc choisi de développer cette technique afin d’obtenir des matrices de connexions électriques de dimensions comprises entre 50 μm et 100 μm, pour une pâte à braser de type Sn3.0Ag0.5Cu. Nous avons déterminé les paramètres de sérigraphie afin d’obtenir un minimum d’étalement de pâte pour un remplissage maximum des ouvertures du masque choisi en Ni-électroformé d’épaisseur 50μm : une vitesse de racle de 20mm/s et une vitesse de démoulage de 4mm/s sont par exemple à retenir pour une pâte de type 5. L’étude du masque de sérigraphie a conduit au choix d’ouvertures circulaires. Des formes de billes circulaires ont été obtenues pour des UBM (Under Bump Metallurgy) également circulaires, de diamètre ¼ et ½ le diamètre de l’ouverture du masque. L’optimisation du profil de refusion a permis de déterminer qu’un palier à 180°C, un TAL de 90s ou plus et une température maximale à 250°C favorisaient l’obtention de billes circulaires avec absence de vides. Pour une pâte de type 6, des billes de 60à 70μm de diamètre ont été obtenues pour des ouvertures de masque de 100μm. Une étude de fiabilité de ces billes à partir de tests de cisaillement et de l’analyse des IMC (composés intermétalliques) formés après refusion a permis de montrer que des UBM en Cr-Cu-Au, de diamètre égal à la moitié de l’ouverture du masque, permettaient d’assurer un meilleur maintien mécanique des billes / The semiconductor industry has continuously improved its products by increasing the density of integration resulting in an increasing of the I/Os, always with a low cost requirement. To obtain high-density and high-speed packaging, the Flip-Chip interconnection technology was introduced by IBM also called C4 (Control Collapse Chip Connection). Solder bumps have been widely used in electronic industry and were generally based on the Sn-Pb alloy, for its low melting point and good wetting property. Containing highly toxic element (Pb), Pb-Sn solder alloy has been banned. The ternary alloy Sn-Ag-Cu seems to be the best compromise, in fact it as physical and chemical characteristics equivalent to that of Sn-Pb.In this study we are interested to optimize stencil printing process and adjust it with the flip-chip technology, in order to obtain solder bumps which height is between 50µm and 100µm associated to pitches less than or equal to 200µm, using Sn-3.0Ag-0.5Cu solder paste. We have optimized the stencil printing parameters machine, the stencil apertures shape and size (circular shape and 50µm height, for a Ni-electroformed stencil). Spherical solder balls have been achieved with circular UBM (Under Bump Metallurgy), which diameter is ¼ and ½ the diameter of the stencil aperture. The reflow thermal profile is the key to the formation of a reliable solder bump. It must allow a homogeneous reflow for all particles of the metallic solder paste. We define a thermal profile with a Time above liquidus (TAL) of 90s, a temperature in soaking zone (Ts) of 180°C and a maximum temperature (Tmax) of 250°C. For type 6 solder pastes, balls of 60-70µm diameter have been obtained for 100µm stencil apertures.The quality of a solder joint is directly related to the adhesion of the solder ball to the substrate. Among the various methods of mechanical testing, shear testing is the most widely used to assess the strength of the attachment of beads to the substrate and determine the fragility of the ball at the interface caused by the intermetallic layer compounds (IMC) formed after the reflow step. We have shown that Cr-Cu-Au UBM, with a diameter equal to the half of the stencil aperture, ensure the mechanical adhesion of the balls
29

Electroplated multi-path compliant copper interconnects for flip-chip packages

Okereke, Raphael Ifeanyi 22 May 2014 (has links)
The international technology roadmap for semiconductors (ITRS) 2012 report foresees the use of porous dielectric materials with a low dielectric constant in conjunction with copper interconnects as a way to reduce the resistive-capacitive (RC) delay in microelectronic applications. However, the introduction of pores in the dielectric not only serves as stress raisers but also diminishes the structural strength of the material. The challenge therefore with the implementation of low-k dielectrics for high-performance flip-chip packages is to create a reliable die to organic substrate interconnect solution which induces low stresses on the die to prevent the cohesive cracking and the interfacial delamination of the dielectric material. Potential interconnect solutions that meet this challenge are MEMS-like compliant freestanding micro-structures. These structures are designed to work as spring-like elements which allow the free lateral and out-of-plane motion between the silicon die and the organic substrate under assembly conditions as well as under thermal or power cycling. Thus, the focus of this research is to design, fabricate, and characterize electrically and mechanically an innovative compliant interconnect approach that addresses these challenges. The proposed interconnect is scalable in dimensions and pitch, and consists multiple electrical paths which will provide redundancy against interconnect failure. The multi-path design employs parallel electrical paths which effectively split a larger cross-sectional area into several smaller areas making the overall design more compliant than otherwise. This research proposes wafer-level, high-yield, CMOS-compatible fabrication procedure using sequential photolithography and copper electroplating. The proposed interconnects are symmetric and are amenable to easy reflow assembly to substrates. The mechanical compliance of the fabricated structures is studied through nano-indentation, while the electrical characteristics are assessed through fabricated prototypes. The xvi thermo-mechanical reliability of compliant interconnects is also demonstrated. Lastly, the dimensional scalability of the interconnects is also demonstrated.
30

Thermo-Mechanical Selective Laser Assisted Die Transfer

Miller, Ross Alan January 2011 (has links)
Laser Induced Forward Transfer (LIFT) techniques show promise as a disruptive technology which will enable the placement of components smaller than what conventional pick-and-place techniques are capable of today. Limitations of current die-attach techniques are presented and discussed and present the opportunity for a new placement method. This study introduces the Thermo-Mechanical Selective Laser Assisted Die Transfer (tmSLADT) process and is an application of the unique blistering behavior of a dynamic releasing layer when irradiated by low energy focused UV laser pulses. The potential of tmSLADT as the next generation LIFT technique is demonstrated by the "touchless" transfer of 65 μm thick silicon tiles between two substrates spaced 195 μm apart. Additionally, the advantages of an enclosed blister-actuator mechanism over previously studied ablative and thermal releasing techniques are discussed. Finally, experimental results studying transfer precision indicate this non optimized die transfer process compares with, and may exceed, the placement precision of current assembly techniques. / Defense Microelectronics Activity (DMEA) under agreement number H94003-09-2-0905

Page generated in 0.0779 seconds